STAT6061/STAT5008 – Causal Inference

Part 9. Multiple mediation analysis

An-Shun Tai

¹Department of Statistics National Cheng Kung University ²Institute of Statistics and Data Science National Tsing Hua University

Two-mediator model

Path-specific effects (PSEs)

 \blacktriangleright Direct effect = PSE₀; Indirect effect = PSE_{M1} + PSE_{M2} + PSE_{M1M2}

```
\begin{array}{l} \text{PSE}_{0} \colon A \to Y \\ \text{PSE}_{M_{1}} \colon A \to M_{1} \to Y \\ \text{PSE}_{M_{2}} \colon A \to M_{2} \to Y \\ \text{PSE}_{M_{1}M_{2}} \colon A \to M_{1} \to M_{2} \to Y \end{array}
```

Two-mediator model

Cross-world assumption in the context of multiple mediators

Can all of four PSEs be identified from observational data?

- > It is difficult without additional assumptions.
- In the case of two mediators, M1 is obvious to be a intermediated confounder in the relationship among A, M2, and Y.
- \rightarrow We cannot separate (A \rightarrow M1 \rightarrow Y) and (A \rightarrow M1 \rightarrow M2 \rightarrow Y)

Four effect decomposition strategies

A trade-off between assumption required and information obtained

Two-way (TW) decomposition, Partially forward (PF) decomposition, Partially backward (PB) decomposition, and Complete decomposition.

 $PSE_{M_1}: A \to M_1 \to Y ; PSE_{M_2}: A \to M_2 \to Y ; PSE_{M_1M_2}: A \to M_1 \to M_2 \to Y$

TW decomposition

- Mediation structure-robust
- One indirect effect $PSE_{M_1} + PSE_{M_2} + PSE_{M_1M_2}$
- Total effect

PF decomposition

- Sequential mediators

Total effect

- Two indirect effects (*M*-leading indirect effect) $PSE_{M_1} + PSE_{M_1M_2}$ PSE_{M_2}

PB decomposition

- Mediation structure-robust
- Two indirect effects (*M*-inducing indirect effect) PSE_{M_1} $PSE_{M_2} + PSE_{M_1M_2}$
- Interventional total effect

Complete decomposition

- Sequential mediators
- Three indirect effects

 $\frac{PSE_{M_1}}{PSE_{M_2}}$ $PSE_{M_1M_2}$

- Interventional total effect

Two-way decomposition strategy

> Treating all mediators as a whole. Direct effect = PSE_0 ; Indirect effect = $PSE_{M_1} + PSE_{M_2} + PSE_{M_1M_2}$

> Identification and estimation follow from the one-mediator model.

> It is simple but practically useful.

Two-way decomposition strategy

Partially forward decomposition strategy

- ➤ Three components are decomposed from the effect of A → Y. Direct effect = PSE_0 ; M1-leading indirect effect = $PSE_{M_1} + PSE_{M_1M_2}$; M2-leading indirect effect = PSE_{M_2}
- \blacktriangleright Note that (A \rightarrow M1 \rightarrow Y) and (A \rightarrow M1 \rightarrow M2 \rightarrow Y) cannot be separated naturally.

Partially forward decomposition strategy

Interventional approach

Geneletti, JRSSB 2007

From individual intervention to population intervention.

- The conventional approach for defining causal effects is $Y(a,M(a')) \rightarrow E(Y(a,M(a')))$
- The interventional approach for defining causal effects is E(Y(a,G(a')))

where $G(a') \sim M(a')|C$

Partially backward decomposition strategy

- ➤ Three components are decomposed from the effect of A → Y. Direct effect = PSE_0 ; M1-inducing indirect effect = PSE_{M_1} ; M2-inducing indirect effect = $PSE_{M_2} + PSE_{M_1M_2}$
- > Define causal effects by an interventional approach.
- Structure-free

Partially backward decomposition strategy

Complete decomposition strategy

➤ Four components are decomposed from the effect of A → Y. Direct effect = PSE_0 ; PSE_{M_1} ; PSE_{M_2} ; $PSE_{M_1M_2}$

> Define causal effects by a **interventional approach**

Complete decomposition strategy

Four effect decomposition strategies

A trade-off between assumption required and information obtained

Two-way (TW) decomposition, Partially forward (PF) decomposition, Partially backward (PB) decomposition, and Complete decomposition.

 $PSE_{M_1}: A \to M_1 \to Y ; PSE_{M_2}: A \to M_2 \to Y ; PSE_{M_1M_2}: A \to M_1 \to M_2 \to Y$

TW decomposition

- Mediation structure-robust
- One indirect effect $PSE_{M_1} + PSE_{M_2} + PSE_{M_1M_2}$
- Total effect

PF decomposition

- Sequential mediators

Total effect

- Two indirect effects (*M*-leading indirect effect) $PSE_{M_1} + PSE_{M_1M_2}$ PSE_{M_2}

PB decomposition

- Mediation structure-robust
- Two indirect effects (*M*-inducing indirect effect) PSE_{M_1} $PSE_{M_2} + PSE_{M_1M_2}$
- Interventional total effect

Complete decomposition

- Sequential mediators
- Three indirect effects

 $\frac{PSE_{M_1}}{PSE_{M_2}}$ $PSE_{M_1M_2}$

- Interventional total effect

Integrated multiple mediation analysis

Flowchart

Identification

Two-way decomposition

 $Q_{TW}(a,e) \equiv \int E[Y|a,\widetilde{\boldsymbol{m}}] f(\widetilde{\boldsymbol{m}}|e) d\widetilde{\boldsymbol{m}}$

Direct effect $Q_{TW}(1,0) - Q_{TW}(0,0)$; Indirect effect $Q_{TW}(1,1) - Q_{TW}(1,0)$

> PF decomposition

$$Q_F(a, e_1, e_2) \equiv \int E[Y|a, \widetilde{\boldsymbol{m}}] f(m_1|e_1) f(m_2|e_2, m_1) d\widetilde{\boldsymbol{m}}$$

Direct effect $Q_F(1,0,0) - Q_F(0,0,0)$; M1-Indirect effect $Q_F(1,1,0) - Q_F(1,0,0)$; M2-Indirect effect $Q_F(1,1,1) - Q_F(1,1,0)$ > PB decomposition

$$Q_B(a, e_1, e_2) \equiv \int E[Y|a, \widetilde{\boldsymbol{m}}] f(m_1|e_1) f(m_2|e_2) d\widetilde{\boldsymbol{m}}$$

Direct effect $Q_B(1,0,0) - Q_B(0,0,0)$; M1-Indirect effect $Q_B(1,1,0) - Q_B(1,0,0)$; M2-Indirect effect $Q_B(1,1,1) - Q_B(1,1,0)$ \succ Complete decomposition

$$Q_{C}(a, e_{1}, e_{2}, e_{3}) \equiv \int E[Y|a, \widetilde{\boldsymbol{m}}] f(m_{1}|e_{1}) \{ \int f(m_{2}|e_{2}, m_{1}^{*}) f(m_{1}^{*}|e_{3}) dm_{1}^{*} \} d\widetilde{\boldsymbol{m}}.$$

Estimation

Inverse-probability-weighting for PF decomposition

$$Q_F(a, e_1, e_2) = \int E[Y|a, \widetilde{m}, C] f_{M_1|A,C}(m_1|e_1, C) f_{M_2|A,M_1,C}(m_2|e_2, m_1, C) d\widetilde{m}$$
$$= E(W_F(a, e_1, e_2; M_1, M_2) \times Y)$$

where $W_F(a, e_1, e_2; M_1, M_2) = [f_{M_1|A,C}(M_1|e_1, C)f_{M_2|A,M_1,C}(M_2|e_2, M_1, C)I(A = a)]/$

 $[f_{A|C}(A|C)f_{M_1|A,C}(M_1|A,C)f_{M_2|A,M_1,C}(M_2|A,M_1,C)].$

The IPW estimator for $Q_F(a, e_1, e_2)$ is

$$\widehat{\Delta}_F^{IPW}(a, e_1, e_2) = \mathbb{P}_n(\widehat{W}_F(a, e_1, e_2; M_1, M_2) \times Y),$$

where $\widehat{W}_F(a, e_1, e_2; M_1, M_2)$ is the weight estimated by substituting $\widehat{f}_{A|C}$, $\widehat{f}_{M_1|A,C}$, and $\widehat{f}_{M_2|A,M_1,C}$.

Application

Causal mechanism of hepatitis C virus (HCV) infection on mortality

Table 7. Effect decomposition of HCV (A) on mortality (Y) through HBV (M1) and abnormal ALT (M2) under the four decomposition strategies.

Path	Strategy							
	Complete		PF		PB		Two-way	
	decomposition		decomposition		decomposition		decomposition	
	effect (SD)	P value	effect (SD)	P value	effect (SD)	P value	effect (SD)	P value
A→Y	0.109 (0.053)	0.034*	0.098 (0.049)	0.038*	0.109 (0.053)	0.034*	0.098 (0.049)	0.038*
$A \rightarrow M_1 \rightarrow Y$	-0.083 (0.035)	0.013*	-0.081 (0.032)	0.010*	-0.083 (0.034)	0.013*	-0.028 (0.039)	0.409
$A {\rightarrow} M_1 {\rightarrow} M_2 {\rightarrow} Y$	-0.009 (0.003)	0.003*			0.045	¹⁵ 0.010*		
$A \rightarrow M_2 \rightarrow Y$	0.054 (0.017)	0.002*	0.052 (0.017)	0.002*	(0.017)			
Total effect	0.071 (0.030)	0.018*	0.070 (0.029)	0.019*	0.071 (0.030)	0.018*	0.070 (0.029)	0.019*

Abbreviations: HCV: hepatitis C virus; HBV: hepatitis B virus; ALT: alanine aminotransferase; PF: partially forward; PB: partially backward; SD: standard deviation