STAT6061/STAT5008 – Causal Inference

Part 4-2. Difference-in-Differences (DiD) Method

An-Shun Tai

¹Department of Statistics National Cheng Kung University ²Institute of Statistics and Data Science National Tsing Hua University

Before-and-after with control design

- In the presence of unmeasured confounding, a unit is often considered its own best control, which makes before—after comparisons intuitively appealing.
- However, a before-after comparison alone is not sufficient for causal inference, since outcome changes may reflect underlying time trends rather than treatment effects. (Why?)
- Alternatively, a treatment-control comparison at a single point in time (cross-sectional comparison) can yield unbiased estimates if all systematic differences between groups are properly adjusted for, but it remains biased in the presence of unmeasured confounding

> Can we combine both comparisons?

That's the central idea behind the Difference-in-Differences (DID) approach.

Design structure: Units from two or more groups are observed across multiple time periods, with treatment applied to some groups in some periods (e.g., repeated cross-sections or panel data).

Example: Minimum Wage and Employment

(Card and Krueger, 1994)

Research Question:

Did raising the minimum wage affect employment in the fast-food industry?

Design:

- Treatment group: New Jersey (raised minimum wage in 1992)
- Control group: Pennsylvania (no minimum wage change)

Time periods:

- Pre-treatment: before April 1992
- Post-treatment: after April 1992

Outcome measured:

Employment levels in fast-food restaurants.

	Before (1991)	After (1992)
New Jersey (Treatment)	Employment measured $Y_{T_0} A = 1$	Employment measured $Y_{T_1} A = 1$
Pennsylvania (Control)	Employment measured $Y_{T_0} A = 0$	Employment measured $Y_{T_1} A = 0$

Example: Minimum Wage and Employment (Conti.) (Card and Krueger, 1994)

Strategy 1: Cross-sectional comparison between different units $\mathbb{E}(Y_{T_1}|A=1) - \mathbb{E}(Y_{T_1}|A=0) = \mathbb{E}(Y_{T_1}(1)|A=1) - \mathbb{E}(Y_{T_1}(0)|A=0)$

- Require exchangeability.

- It is severely biased when unmeasured confounding is present.

	Before (1991)	After (1992)
New Jersey (Treatment)	Employment measured $Y_{T_0} A = 1$	Employment measured $Y_{T_1} A = 1$
Pennsylvania (Control)	Employment measured $Y_{T_0} A = 0$	Employment measured $Y_{T_1} A = 0$

Example: Minimum Wage and Employment (Conti.) (Card and Krueger, 1994)

Strategy 2: Before-after comparison for the same unit:

 $\mathbb{E}(Y_{T_1} - Y_{T_0} | A = 1) = \mathbb{E}(Y_{T_1}(1) - Y_{T_0}(0) | A = 1)$

- It is not the causal effect (ATT): $\mathbb{E}(Y_{T_1}(1) - Y_{T_1}(0)|A = 1)$

1. Time Trend Bias (Secular Trend Bias)

2. Regression to the Mean

Example: Measuring blood pressure before and after a health policy

change, without accounting for general population trends or aging.

Example: Selecting students with very low test scores for tutoring

may show improvement post-tutoring even if the effect is due to

natural score fluctuation.

- An extremely strong assumption is required: $\mathbb{E}(Y_{T_1}(0)|A=1) = \mathbb{E}(Y_{T_0}(0)|A=1)$

3. History Effects

Example: A national campaign launched in the interim could affect behavior, not just the studied intervention.

4. Maturation Effects

Example: A child's improved reading ability may be due to natural development, not a specific intervention.

	Before (1991)	After (1992)
New Jersey (Treatment)	Employment measured $Y_{T_0} A = 1$	Employment measured $Y_{T_1} A = 1$
Pennsylvania (Control)	Employment measured $Y_{T_0} A = 0$	Employment measured $Y_{T_1} A = 0$

Example: Minimum Wage and Employment (Conti.) (Card and Krueger, 1994)

Strategy 3: Combine cross-sectional and before-after comparisons

The key concepts

- 1. A cross-sectional comparison is vulnerable to between-group confounding, but it avoids temporal confounding and is less affected by external interventions.
- 2. A before–after comparison is free from between-group confounding (since it uses the same units), but it is susceptible to temporal confounding and external changes over time.
- As a result, compare before-after changes between groups by using

$$\mathbb{E}(Y_{T_1} - Y_{T_0}|A = 1) - \mathbb{E}(Y_{T_1} - Y_{T_0}|A = 0)$$

which is called Difference-in-Differences (DiD) method

	Before (1991)	After (1992)
New Jersey (Treatment)	Employment measured $Y_{T_0} A = 1$	Employment measured $Y_{T_1} A = 1$
Pennsylvania (Control)	Employment measured $Y_{T_0} A = 0$	Employment measured $Y_{T_1} A = 0$

Assumption and identification for the DiD method

> Parallel trends assumption

- In the absence of treatment, the treatment and control groups are expected to exhibit parallel trends in outcomes over time. That is

$$\mathbb{E}(Y_{T_1}(0) - Y_{T_0}(0)|A = 1) = \mathbb{E}(Y_{T_1}(0) - Y_{T_0}(0)|A = 0)$$

- Also referred to as the additive equi-confounding assumption.

> Fact: no causal effect of A on Y_{T_0}

$$Y_{T_0}(1) = Y_{T_0}(0) = Y_{T_0}$$

Identification

$$\begin{split} & \mathbb{E}(Y_{T_1} - Y_{T_0}|A = 1) - \mathbb{E}(Y_{T_1} - Y_{T_0}|A = 0) \\ &= \mathbb{E}(Y_{T_1}(1) - Y_{T_0}(1)|A = 1) - \mathbb{E}(Y_{T_1}(0) - Y_{T_0}(0)|A = 0) \quad \text{(Consistency assumption)} \\ &= \mathbb{E}(Y_{T_1}(1) - Y_{T_0}(1)|A = 1) - \mathbb{E}(Y_{T_1}(0) - Y_{T_0}(0)|A = 1) \quad \text{(Parallel trends assumption)} \\ &= \mathbb{E}(Y_{T_1}(1) - Y_{T_0}|A = 1) - \mathbb{E}(Y_{T_1}(0) - Y_{T_0}|A = 1) = \mathbb{E}(Y_{T_1}(1) - Y_{T_1}(0)|A = 1) = \text{ATT} \\ &\text{(no causal effect of A on } Y_{T_0}) \end{split}$$

Alternative view for DiD

The DiD method

$$\mathbb{E}(Y_{T_1} - Y_{T_0}|A = 1) - \mathbb{E}(Y_{T_1} - Y_{T_0}|A = 0)$$

represents the difference in before-after changes between the treatment and control groups.

- Assuming parallel trends, time-related bias in the treated group's before–after comparison can be adjusted for using the control group's trend.

> Alternative view

- (Constant Difference) Assumption:

$$\mathbb{E}(Y_{T_1}(0) | A = 1) - \mathbb{E}(Y_{T_1}(0) | A = 0) = \mathbb{E}(Y_{T_0}(0) | A = 1) - \mathbb{E}(Y_{T_0}(0) | A = 0)$$

- DiD formula can be rewritten as

$$\left[\mathbb{E}(Y_{T_1}|A=1) - \mathbb{E}(Y_{T_1}|A=0)\right] - \left[\mathbb{E}(Y_{T_0}|A=1) - \mathbb{E}(Y_{T_0}|A=0)\right]$$

represents the change in cross-sectional differences between pre- and post-treatment periods.

- Under the constant difference assumption, bias from covariate imbalance between groups can be removed by adjusting for pre-treatment differences.

References

Card, D., & Krueger, A. B. (1993). Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania. *The American Economic Review*, *84*(4), 772-793.