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Current modeling strategies

> Require correct modeling of the outcome variable | E(Y(a)) = E(E(Y|A = a,X; 82))

1. Standardization or outcome regression
N
1 A A
t = > (1 (X Br) = 10(Xi: Bo)}
i=1

where u,(X; B,) = E(Y|A = a,X; B,)

» Require correct modeling of the propensity score (treatment variable)
1. IPW (Horvitz-Thompson estimator )

f’”:lZN A, _1-A
2 U NLij—ile(Xpa) b 1—e(X;a)

where e(X; @) = Pr(4 = 1|X; a)
2. Propensity score matching

» Nonparametric approach

1. Mahalanobis metric matching
2. Coarsened exact matching (CEM)
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I(A=a)

E(Y(a)) = IE(

Pr(A = a|X; a)

)




Doubly robust estimator

Theorem 3.4
If the conditional exchangeability (A L {Y(1),Y(0)}|X) and positivity (0 < e(X) < 1) hold, then

E(Y(1) = IE( A A-eta) ﬁﬂ) and

e(X; a) B e(X; CZ)
~ (1-A)Y e(X;a) — A .
E(Y(0) =E (1 —e(X;a) 1-e(X;a) ol '80)>

Moreover, if either the propensity score model or the outcome model, though not necessarily both, is correctly
specified, then both equalities hold.

» The result in Theorem 3.4 motivates the following estimator of ATE

A—e(X; @) (1-A)Y e(X;a) —A L
Tpr = NZ{e(Xl,a) e(X;; @) ua(Xi; B 1)} 1{ e(Xl-;&)_1—e(Xi;&)”°(X"’ﬁ°)}
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Doubly robust estimator (cont.)

» Theorem 3.4 augments the IPW estimator with an imputed outcome, leading to the augmented inverse
propensity score weighting (AIPW) estimator, also known as augmented inverse probability weighting.

» Theorem 3.4 establishes that T,z possesses the doubly robust property, remaining consistent if either the
propensity score model or the outcome model is correctly specified.

= AIPW is also referred to as the DR estimator.

» Alternative augmented estimator motivated by

A
E(Y(1)) =E (e(X; 2 Y — (X B+ m(X; ﬁ1)> and

1—-A
IE(Y(O)) = E (1 (_ e(X;)a) {Y — uo(X; Bo)} + uo(X; ,30)>

- This formula improves the outcome regression estimator by incorporating weighted residuals, thereby achieving

augmented robustness.
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Doubly robust estimator (Proof of Theorem 3.4)

(LAY A-ea)
e(X;a)_ e(X;a)

AY(1) A—-e(X;a)
e(X;a) - e(X;a)

e (X; ,31)> - E(Y(l))

i (X; By) — Y(1)>

A
E (e(X; ) Y1) — i (X; B} + {1 (X5 By) — Y(l)}>

I
55

A
<{8(X; a) - 1}{Y(1) - .ul(X; ,81)}>

A

A
=E (IE <{e(X; ol 1} IX) x EQY (1) — pi (X; ,Bl)}lX)> = E(("

true(X) —e(X; a)
e(X;a)

3 Xt rue (X)) — 11 (X B

where pig ¢re(X ) = E(Y(1)|X) and ey (X) = Pr(4 = 1|X)

» Therefore, the equality holds if either p1 ¢ryelX )z by (X5:81).0F erue (X)) = e(X; )



Simulation study from Ding (2024), Section 12.3.2

1. both the propensity score and outcome
models are correct;

____lrex HT__Hajck |DR___

ave.bias 0.00 0.02 0.03 0.01
true.se 0.11 0.28 0.26 0.13
est.se 0.10 0.25 0.23 0.12

2. the propensity score model is wrong but the
outcome model is correct

__lreg [HT _Hajek [DR___
ave.bias 0.00 -0.76 -0.75 -0.01
truese  0.12 0.59 0.47 0.18
est.se 0.13 0.50 0.38 0.18

3. the propensity score model 1s correct but the
outcome model is wrong

____lreg [HT | Hajek [DR__

ave.bias -0.05 0.00 -0.01 0.00
true.se 0.11 0.15 0.14 0.14
est.se 0.11 0.14 0.13 0.14

4. both the propensity score and outcome
models are wrong.

___lreg HT _Hajek |DR___

ave.bias -0.08 0.11 -0.07 0.16
true.se 0.13 0.32 0.20 0.41
est.se 0.13 0.25 0.16 0.26



More on the DR estimator

» Double robustness is a large-sample property.

> Protection against model misspecification:
The DR estimator gives you two chances to obtain a consistent estimate — if either the propensity score model or the
outcome model is correctly specified, consistency is achieved.

» Variance comparison (semiparametric efficient):

1. When both the models of propensity score and the outcome are correctly specified, Tpr has smaller variance than
the IPW and the outcome regression estimators in large samples.

2. If only the outcome model is correctly specified, Tpr generally has larger variance than the direct outcome
regression estimator in large samples.

» Finite sample concern (Kang and Schafer, 2007):
When both models are misspecified, the DR estimator can perform substantially worse than simple outcome regression
or IPW i finite samples. (See Pages 5 and 6)

> It is suggested to approximate the variance of 7y via the nonparametric bootstrap.
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Targeted Maximum Likelihood Estimation (TMLE)

(Van Der Laan and Rubin, 2006; Schuler and Rose, 2017)

TMLE = Machine learning—friendly + Doubly robust + Efficient causal inference estimator.

Inverse Probability Weighting

G-Computation TMLE
E[Y]A X] E[Y|A, X]

Outcome Mechanism Used to Generate Outcome Mechanism Used to Generate
Predicted Outcome Values Under Both Predicted Outcome Values Under Both

Exposure Levels Exposure Levels

4
P(A=1]X) P(A=1]X)
Propensity Scores are Estimated and

Exposure Mechanism Used to Update
Initial Estimator, Generating “Targeted” Used to Create Inverse Probability
Predicted Outcome Values Weights; All Observations are Weighted

W A4 4
Calculate ATE as Mean Difference in Calculate ATE as Mean Difference in Calculate ATE as Mean Difference
Predicted Outcome Pairs Across Targeted Predicted Outcome Pairs Between Weighted Outcomes Among
Individuals Across Individuals Exposed and Unexposed
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Basic Steps of TMLE for ATE

(Van Der Laan and Rubin, 2006; Schuler and Rose, 2017)
ATE: t = E(Y(1)) — E(Y(0))

Step 1: Initial outcome regression and propensity score

- Outcome Regression :

estimate the conditional outcome model u,(X; 8,) = E(Y|A = a,X;B,) for a =0, 1.
- Propensity Score:

estimate the treatment assignment model e(X; @) = Pr(4 = 1|X; a).

Step 2: Construct the clever covariate
Define the clever covariate H(A, X), which is a specially crafted function of A and X using the propensity
score. For the ATE parameter, the clever covariate is:
A 1-A
e(X;:a) 1—e(X;q)
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H(A X) =




Basic Steps of TMLE for ATE

(Van Der Laan and Rubin, 2006; Schuler and Rose, 2017)
ATE: t = E(Y(1)) — E(Y(0))

Step 3: Update initial estimate of E(Y|4 = a, X; B,) by regressing on the clever covariate.
Regress the observed outcome Y on H(A4, X), treating ¥ = IE(Y|A, X; Ba) as a fixed offset, in order to

estimate J.

For a binary or bounded outcome:
logit(E*(Y|4,X;8)) = logit(Y) + & X H(A, X)

- This yields the fluctuation (targeting) coefficient §. Equivalently, § is chosen to solve the score equation
(setting the derivative of log-likelihood to zero):

1 N
Nz H(A, X){Y, — E*(Y]4,X; 6)}
i=1
(=the score equations of the GLM)
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Basic Steps of TMLE for ATE

(Van Der Laan and Rubin, 2006; Schuler and Rose, 2017)
ATE: t = E(Y(1)) — E(Y(0))

Step 4: Compute the final TMLE estimate

1N A A
TrmLE = Nzizl{ﬁ*(YlA =1,X; 5) — IE*(Y|A =0,X; 5)}

» Why use TMLE?

1. Performs well even with flexible or machine learning models for nuisance function estimation.
2. Double robustness: Consistent if either the outcome model or the propensity score model is correctly specified.
3. Efficiency: Achieves the semiparametric efficiency bound when both models are correctly specified.
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Simulation study
(Schuler and Rose, 2017)

Estimator Mean ATE (SE) Mean Bias 95% CI
Targeted Maximum Likelihood Estimation
Super learner
Outcome variables: A, X1, X5, X3; -3.39 (0.35) -0.01 —4.05, —2.64
exposure variables: X, X5, X3
Misspecified parametric regression
Main-terms misspecification
Outcome variables: A, X;, X2, X3 —-3.39 (0.35) -0.01 -4.08, —2.64
Omitted-variable misspecification
Qutcome variables: A, X4, X5 —3.39 (0.36) —-0.01 -4.09, -2.63
Exposure variables: Xy, X5 —-3.39 (0.35) -0.01 -4.07, -2.69
G-Computation
Super learner
Outcome variables: A, X4, X5, X3 -3.27 (0.35) 0.11 -3.98, —2.56
Misspecified parametric regression
Main-terms misspecification
Outcome variables: A, X, Xo, X3 -3.25 (0.33) 0.13 -3.91, -2.59
Omitted-variable misspecification
Outcome variables: A, X4, Xo —4.98 (0.37) -1.60 —5.69, —4.24°
Inverse Probability Weighting
Super learner
Exposure variables: Xy, X5, X3 -3.43 (0.37) -0.05 -4.17, -2.63
Misspecified parametric regression
Omitted-variable misspecification
Exposure variables: X;, Xo -4.96 (0.37) —-1.58 -5.67, -4.21°
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