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Structuring the nonexperimental study as if it were a randomized 

experiment, based solely on pre-treatment variables.

➢ In observational studies, the stratification (and standardization) methods presented in Part 3.1 are 

designed to emulate the structure of stratified randomized experiments.  

➢ Alternatively, matching methods aim to replicate the structure of paired randomized experiments to 

improve the balance in covariate distributions.

However, matching and paired randomized experiments differ in two ways:  
1. Matching assumes unconfoundedness; paired experiments ensure it by design.

2. Matching is often inexact, leaving some covariate differences between pairs. In contrast, paired experiments use within-pair 

randomization to ensure equal assignment probabilities and avoid bias.

➢ Matching acts as a nonparametric imputation technique for estimating causal effects.

“Design” of nonexperimental studies: Matching
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Steps in implementing matching methods
(Stuart, 2010; Ding, 2024)

1. Defining “closeness”: the distance measure used to determine 

whether an individual is a good match for another.

2. Implementing a matching method, given that measure of 

closeness.

3. Assessing the quality of the resulting matched samples, and 

perhaps iterating with steps 1 and 2 until well-matched 

samples result.

4. Analysis of the outcome and estimation of the treatment effect, 

given the matching done in step 3.
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Types of matching
(Greifer and Stuart, 2021) 
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Benefits of Matching vs. Stratification

➢Finer covariate control
Matching allows for unit-level pairing, achieving better covariate balance than broader strata.

➢Reduces model dependence
Estimation relies less on parametric assumptions due to closer treated-control comparisons.

➢Handles continuous covariates more flexibly
Matching avoids the need to arbitrarily categorize continuous variables.

➢ Improves efficiency in small samples
Especially when the number of treated units is small, matching can use information more effectively.

➢Enables visual and diagnostic checks
Balance can be directly assessed before and after matching.
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Choice of distance metric: Exact matching

➢ 𝑑(𝑋𝑖 , 𝑋𝑗) represents a distance metric quantifying the dissimilarity between samples 𝑖 and 𝑗 in terms of their 

covariates 𝑋𝑖 and 𝑋𝑗.

➢ ℳ𝑖 is the “matched set” for treated sample 𝑖.
Note: In practice, matching is typically performed by pairing each treated sample with one or more similar control samples.

➢ Exact matching

𝑑 𝑋𝑖, 𝑋𝑗 = ൝
0
∞

if 𝑋𝑖 = 𝑋𝑗

if 𝑋𝑖 ≠ 𝑋𝑗

- ℳ𝑖 is a singleton, meaning each treated unit 𝑖 is matched to a single control unit, denoted as ℳ𝑖 = 𝑖∗ .

- The difference-in-means estimator is unbiased for the sample average treatment effect on the treated (ATT).

Ƹ𝜏match =
1

𝑁1
෍

𝑖
𝐴𝑖 𝑌𝑖 − ෍

𝑖∗∈ℳ𝑖

𝑌𝑖∗

- Exact matching scheme is rarely feasible.
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Choice of distance metric: Mahalanobis metric matching

➢ Mahalanobis metric matching

𝑑 𝑋𝑖 , 𝑋𝑗 = (𝑋𝑖 − 𝑋𝑗)𝑇Σ−1(𝑋𝑖 − 𝑋𝑗)

- Σ is the sample covariance matrix of 𝑋, calculated using (1) the pooled treatment and control groups when 

estimating the ATE, or using (2) only the control group when estimating the ATT. 

- Important property: It’s not affected by changes in measurement units or affine transformations of the 

covariates.

Mahalanobis distance

1. Unlike Euclidean distance, Mahalanobis distance standardizes 

covariates and accounts for the covariance structure of the data.

2. This ensures that variables with larger variances or strong 

correlations don’t disproportionately influence the distance.
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Choice of distance metric: Propensity score matching

➢ Matching directly on high-dimensional covariates 𝑋 (especially using Mahalanobis distance) becomes 

difficult as the number of covariates grows. Why?

➢ Propensity score 

𝑒 𝑋 = Pr(𝐴 = 1|𝑋)

- The propensity score is typically estimated using logistic regression.

- One-dimensional matching problem.

Propensity score matching:    𝑑 𝑋𝑖 , 𝑋𝑗 = 𝑒 𝑋𝑖 − 𝑒 𝑋𝑗

Linear propensity score matching:   𝑑 𝑋𝑖 , 𝑋𝑗 = logit 𝑒 𝑋𝑖 − logit 𝑒(𝑋𝑗)

- Matching on the linear propensity score can be particularly effective in terms of reducing bias (Rubin, 

2001).
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Coarsened exact matching (CEM)
(Iacus, King, and Porro, 2011; Iacus, King, and Porro, 2012)

➢ Propensity score matching relies on model specification and may not ensure covariate balance.

➢ Core idea

CEM improves causal inference by exactly matching units on coarsened versions of covariates, ensuring pre-

processing balance and reducing reliance on modeling assumptions.

➢ How it works
1. Temporarily coarsen covariates into meaningful bins (e.g., age → decades).

2. Drop unmatched strata (i.e., strata without both treated and control units).

3. Estimate treatment effects on the retained, balanced sample.

➢ Advantages
- Balance by design: Covariate imbalance is eliminated before analysis.

- Model-free: No need to estimate propensity scores.

- User control: Balance vs. sample size tradeoff is explicit and adjustable.

- Robust to high-dimensional confounding if coarse bins are appropriately defined.
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Covariate balance check 

➢ Matching methods are only as effective as the covariate balance they achieve between treatment 

groups — so how can we ensure good balance?

➢ View 𝑋 as a pseudo outcome and assess the difference in the covariate distribution between treatment 

and control groups.

1. Graphical balance assessment
- Use density plots or histograms to assess the degree of overlap in covariate distributions between groups.

2. Univariate Balance Statistics
- Standardized Mean Difference (SMD), Variance Ratio, Kolmogorov–Smirnov (KS) Statistic

3. Multivariate Balance Statistics

- Mahalanobis Distance, L1 Imbalance Metric, Prognostic Score Balance
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Covariate balance check: Univariate Balance Statistics  

➢ The difference-in-means estimator of the covariates:  Ƹ𝜏𝑋 =
1

𝑁1
σ𝑖=1

𝑁 𝐴𝑖𝑋𝑖 −
1

𝑁0
σ𝑖=1

𝑁 (1 − 𝐴𝑖)𝑋𝑖

➢ Standardized Mean Difference (SMD)
Ƹ𝜏𝑋

መ𝑆𝑋1
2 + መ𝑆𝑋0

2 /2

where 

መ𝑆𝑋1
2 =

1

𝑁1 − 1
෍

𝑖=1

𝑁

𝐴𝑖 𝑋𝑖 − ത𝑋𝐴=1
2 , መ𝑆𝑋0

2 =
1

𝑁0 − 1
෍

𝑖=1

𝑁

(1 − 𝐴𝑖) 𝑋𝑖 − ത𝑋𝐴=0
2 , ത𝑋𝐴=1 =

1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑋𝑖 , ത𝑋𝐴=0 =
1

𝑁0
෍

𝑖=1

𝑁

(1 − 𝐴𝑖)𝑋𝑖

- Assesses mean differences for each covariate between treatment groups → Common threshold: SMD < 0.1

- In addition to comparing the differences in location in the two distributions, one may wish to compare measures of 

dispersion in the two distributions./

➢  Log ratio of standard deviations

ln መ𝑆𝑋1
2 − ln መ𝑆𝑋0

2



Causal Inference, Part 3-2.  An-Shun Tai 12

Issues in covariate balance when using t-statistics

➢ Why might t-statistics and p-value be inappropriate in this context? 

Ƹ𝜏𝑋

መ𝑆𝑋1
2 /𝑁1 + መ𝑆𝑋0

2 /𝑁0

- Balance is an in-sample property: It does not depend on a broader population or super-population.

- Hypothesis tests conflate balance with statistical power: A change in p-value may reflect a change in 

power, not actual imbalance. For example, randomly discarding control units may appear to improve balance, 

but it only reduces power (Imai, King, and Stuart, 2008).

- Not suitable for use in stopping rules: As the control sample size increases, t-statistics tend to decrease, 

which can misleadingly suggest improved covariate balance. However, this does not reflect actual balance and 

is inappropriate for guiding matching procedures. Why?
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➢ Although the propensity score is often used to assess balance empirically, simulation studies have shown 

this approach is conceptually flawed—propensity scores are only meaningful when they actually achieve 

covariate balance.

Aligned Covariates: When covariates are strongly related to both treatment and outcome, all balance measures tend to show high 

correlation with bias, making them reliable indicators.

Misaligned Covariates: When covariates influence treatment but not the outcome, propensity score balance shows poor correlation 

with bias, reducing its effectiveness as a diagnostic tool.

ASMD: Mean Absolute Standardized Mean Difference across covariates.

KS-Stat: Mean Kolmogorov–Smirnov test statistic for distributional differences.

PropScore: Absolute standardized mean difference in the propensity score.

ProgScore: Absolute standardized mean difference in the prognostic score.

Issues in covariate balance when using propensity scores
(Stuart, Lee, and Leacy, 2013)
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Estimation

➢ In the context of matching, the ATT is often the more natural estimand for assessing causal effects.

- ℳ𝑖 = {𝑗|𝑑 𝑋𝑖 , 𝑋𝑗 ≤ 𝛿} is the “matched set” for treated sample 𝑖. 

- Matching can be one-to-M, assigning multiple controls to each treated unit.

- The difference-in-means estimator

Ƹ𝜏match =
1

𝑁1
෍

𝑖
𝐴𝑖 𝑌𝑖 −

1

|ℳ𝑖|
෍

𝑖∗∈ℳ𝑖

𝑌𝑖∗

- Comparison with outcome regression (model-based imputation).

1

𝑁1
෍

𝑖
𝐴𝑖 𝑌𝑖 − ො𝜇0 𝑋𝑖
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Bias of the matching estimator

➢ Except for exact matching, all other matching methods may still result in covariate imbalance, 

which can introduce bias.

➢ Bias of Matching

- Let 𝜒ℳ𝑖
= {𝑋𝑖∗|𝑖∗ ∈ ℳ𝑖} denote the set of covariates for all control units matched to treated unit 𝑖.

- Bias

𝐵 𝑋𝑖 , 𝜒ℳ𝑖
= 𝔼 𝑌𝑖 0 𝐴𝑖 = 1, 𝑋𝑖 − 𝔼

1
ℳ𝑖

σ𝑖∗∈ℳ𝑖
𝑌𝑖∗ 𝜒ℳ𝑖

= 𝜇0 𝑋𝑖 −
1

ℳ𝑖
෍

𝑖∗∈ℳ𝑖

𝜇0 𝑋𝑖∗

➢ Bias-corrected matching estimators(Abadie and Imbens, 2011)
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Weighting

➢ Weighting as a generalization of matching

Ƹ𝜏match =
1

𝑁1
෍

𝑖
𝐴𝑖 𝑌𝑖 −

1

|ℳ𝑖|
෍

𝑖∗∈ℳ𝑖

𝑌𝑖∗

=
1

𝑁1
෍

𝑖:𝐴𝑖=1
𝑌𝑖 −

1

𝑁0
෍

𝑖:𝐴𝑖=0

𝑁0

𝑁1
෍

𝑖′:𝐴𝑖′=1

1(𝑖 ∈ ℳ𝑖′)

|ℳ𝑖′|
𝑌𝑖

=
1

𝑁1
෍

𝑖:𝐴𝑖=1
𝑌𝑖 −

1

𝑁0
෍

𝑖:𝐴𝑖=0
𝑊𝑖𝑌𝑖
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Inverse-probability-weighting

➢ We can infer the average treatment effect by constructing a pseudo-population.

න
𝑥

𝔼 𝑌|𝑒, 𝑥 Pr(𝑥) 𝑑𝑥 = න
𝑥,𝑦

𝑦 Pr 𝑦 𝑒, 𝑥 Pr(𝑥) 𝑑𝑥𝑑𝑦 = න
𝑎,𝑥,𝑦

𝑦
𝐼(𝑎 = 𝑒)

Pr(𝑎|𝑥)
Pr(𝑦, 𝑎, 𝑥) 𝑑𝑥𝑑𝑦𝑑𝑎 = 𝔼

𝐼 𝐴 = 𝑒

Pr(𝐴|𝑋)
𝑌

➢ ATE can be estimated by 

1

𝑁
෍

𝑖=1

𝑁 𝐼 𝐴𝑖 = 1

𝑒(𝑋𝑖)
𝑌𝑖 −

𝐼 𝐴𝑖 = 0

1 − 𝑒(𝑋𝑖)
𝑌𝑖

➢ ATT can be estimated by 

1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑌𝑖 −
𝑒(𝑋𝑖)𝐼 𝐴𝑖 = 0

1 − 𝑒(𝑋𝑖)
𝑌𝑖
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Pseudo-population

➢ In observational studies, treatment groups may differ 

systematically in covariates, making direct comparisons biased.

➢ Inverse probability weighting reweights individuals by the 

inverse of their probability of receiving the treatment (i.e., 

Propensity score) they actually received (based on covariates).

➢ This reweighting creates a pseudo-population where treatment 

assignment is independent of measured covariates—mimicking a 

randomized experiment.

➢ In the pseudo-population, the distribution of covariates is 

balanced across treatment groups, enabling unbiased estimation 

of ATE.

Treatment Group Treatment Group

Control Group Control Group

Modified from https://causallycurious.com/posts/ip-weighting/ip_weighting
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“Matching methods are not designed to compete with modeling adjustments such as 

linear regression, and, in fact, the two methods have been shown to work best in 

combination (Stuart, 2010)”

Remark 1: Overadjustment?

➢ Does Matching + Regression = Overadjustment?

- Matching handles design-stage confounding control.

- Regression addresses residual imbalance—systematic 

differences remaining after matching—and enhances 

estimation efficiency.

⇒Together, they help reduce bias and variance

Rubin, D. B., & Thomas, N. (2000). Combining propensity score matching with additional 

adjustments for prognostic covariates. Journal of the American Statistical Association, 95(450), 
573-585.
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Remark 2: Are propensity scores suitable for matching?
(King and Nielsen, 2019)

➢ Propensity score paradox (King and Nielsen, 2019)
It refers to the counterintuitive situation where using propensity score matching (PSM) can actually increase imbalance or bi as in 

some settings—despite being designed to reduce them.

➢ Why?

- Unlike Mahalanobis matching, which directly matches on observed covariates, PSM matches based on the estimated probability of 

treatment assignment.

- Close propensity scores do not guarantee similarity in covariates, so residual imbalance can still remain after matching.

➢ Damage caused in real data

➢ Echoes Remark 1’s conclusion: Matching + Regression 

Study Context Sample Size Covariates

Finkel et al. 

(2012)

Civic education 

in Kenya

3,141 

(1,347 treated)

Demographic, socioeconomic, leadership

Nielsen et al. 

(2011)

Aid shocks and 

conflict onset

2,627 

(393 treated)

Democracy, wealth, population, prior conflict, 

ethnic & religious fractionalization

Finkel, Horowitz, and Rojo-Mendoza (2012) Nielsen et al. (2011)
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Remark 3: True or estimated propensity score?

➢ A well-known result in the literature (Rosenbaum, 1987) shows that using the estimated propensity 

score often leads to better efficiency and covariate balance than using the true propensity score.

➢ Why?

1. Estimated propensity scores adjust for random covariate imbalances in the sample, whereas the true 

propensity score does not.

2. While the true propensity score ensures unbiasedness, using an estimated score can reduce 

variance. 
This phenomenon is akin to the benefits seen in regression adjustments within randomized experiments, where 

adjusting for covariates can lead to more precise estimates.
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