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Randomized experiment vs. observational study

➢ An observational study is characterized by an unknown functional form of the assignment mechanism, 

typically expressed as the propensity score 𝑒 𝑥 = Pr 𝐴 = 1 𝑋 = 𝑥, 𝑌 0 , 𝑌 1 , whereas in a 

randomized experiment, the assignment mechanism is known and explicitly specified by the study 

design.

➢ An observational study typically assumes that the assignment mechanism is regular—meaning it is 

individualistic, probabilistic, and unconfounded—whereas a randomized experiment ensures the 

assignment mechanism is regular by design and under experimental control.

Randomized experiment Observational study

Assignment mechanism is designed to be 

individualistic.

Assignment mechanism is assumed to be individualistic (also known as 

the no interference assumption, as discussed in Part 1.3).

Assignment mechanism is designed to be 

probabilistic.

Assignment mechanism is assumed to be probabilistic (also known as the 

positivity assumption as discussed in Part 1.3).

Assignment mechanism is designed to be 

unconfounded.

Assignment mechanism is assumed to be unconfounded (also known as 

the exchangeability assumption as discussed in Part 1.3).

Propensity score is known Propensity score is unknown and needs to be estimated 
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➢ Randomization guarantees unconfounded treatment assignment, ensuring marginal exchangeability: 

{𝑌 1 , 𝑌 0 } ⊥ 𝐴

➢ Due to randomization, treated and control samples are exchangeable and considered “similar”:  
– Similar in terms of observed covariates (e.g., age, gender, weight, baseline health status, socioeconomic factors)  

– More importantly, similar with respect to unobserved covariates and potential outcomes

➢ Conditional randomization (stratified randomization) ensures 
– Conditional exchangeability: {𝑌 1 , 𝑌 0 } ⊥ 𝐴|𝑋.

– That is, treated and control samples are considered “similar” within each stratum defined by covariates.

➢ The core rationale of causal inference in observational studies is to conceptualize them as 

conditionally randomized experiments, given observed covariates.

➢ Although observational studies lack randomization, we can assess “similarity” within each stratum—

or aim to reduce “dissimilarity”—through appropriate covariate adjustment methods.

Randomization
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What covariates should we adjust for in observational

studies?
(Ding, 2024)

The covariates have different features:

1.  𝑋 (= 𝐶) affects both the treatment and the outcome. Conditioning on 𝑋 ensures 

ignorability, so we should control for 𝑋.

2.  𝑋𝑅 is pure random noise not affecting either the treatment or the outcome. Including it 

in analysis does not bias the estimate but it introduces unnecessary variability in finite 

sample.

3.  𝑋𝐴 is an instrumental variable that affects the outcome only through the treatment. 

Including 𝑋𝐴 in analysis does not bias the estimate although it increases variability. 

However, with unmeasured confounding, including it in analysis amplifies the bias.

4.  𝑋𝑌 affects the outcome only but not the treatment. Without conditioning on it, the 

ignorability still holds. Since they are predictive to the outcome, including them in 

analysis often improves precision.

5.  𝑋𝐼 is affected by the treatment and outcome. It is a post-treatment variable, not a 

pretreatment covariate. We should not include it if the goal is to infer the effect of the 

treatment on the outcome. 

𝐴 𝑌 

𝑋𝐴 𝑋𝑌 𝑋 

𝑋𝑅 

𝑋𝐼 
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Assess causal effects from observational studies

➢ The covariates that require adjustment in observational studies are the confounders, denoted by 𝐶.

➢ Identification assumptions:
– Conditional exchangeability: {𝑌 1 , 𝑌 0 } ⊥ 𝐴|𝐶.

– SUTVA: no interference + consistency 

– Positivity

➢ Under the three identification assumptions, the causal parameter 𝔼(𝑌 𝑎 ) can be identified as 

න 𝔼(𝑌 𝐴 = 𝑎, 𝐶 = 𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

The ATE, 𝔼(𝑌 1 − 𝑌 0 ), is identified as 

න{𝔼(𝑌 𝐴 = 1, 𝐶 = 𝑐 − 𝔼 𝑌 𝐴 = 0, 𝐶 = 𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

➢ This formulation aligns with the core principle of estimating causal effects in conditionally (stratified) 

randomized experiments.
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Estimation of ATE 

➢ How can we estimate ATE

𝜏 = න{𝔼(𝑌 𝐴 = 1, 𝐶 = 𝑐 − 𝔼 𝑌 𝐴 = 0, 𝐶 = 𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

➢ Following the concept of stratified randomized experiments, we use stratification to estimate causal 

effects within each stratum, and standardization to derive the marginal effect by weighting each 

stratum-specific estimate by its population proportion.

➢ Discrete covariate/confounder: {𝑌 1 , 𝑌 0 } ⊥ 𝐴|𝐶 = 𝑐 for 𝑐 = 1,2,3 … , 𝐾

Ƹ𝜏 = ෍

𝑖=1

𝑁

𝜋𝑐

𝐼 𝐴𝑖 = 1, 𝐶𝑖 = 𝑐 𝑌𝑖

𝑁𝑐,1
−

𝐼 𝐴𝑖 = 0, 𝐶𝑖 = 𝑐 𝑌𝑖

𝑁𝑐,0

𝜋𝑐 = #{𝑖: 𝐶𝑖 = 𝑐} 

𝑁𝑐,𝑎 = #{𝑖: 𝐶𝑖 = 𝑐, 𝐴𝑖 = 𝑎}
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Estimation of ATE: Outcome regression

➢ For continuous 𝐶, stratification can be implemented by fitting an outcome regression model with 

covariate adjustment.

𝜇𝑎(𝐶) = 𝔼(𝑌 𝐴 = 𝑎, 𝐶

- For example, we can assume a linear regression model: 𝜇𝑎(𝐶) = 𝔼(𝑌 𝐴, 𝐶 = 𝛽0 + 𝛽𝑎𝐴 + 𝛽𝑐𝐶
- These parameters can be estimated using ordinary least squares (OLS) or estimating equations.

- The predictor is denoted as Ƹ𝜇𝑎(𝐶)

➢ Standardization can be achieved nonparametrically by using sample mean:

Ƹ𝜏𝑜 =
1

𝑁
෍

𝑖=1

𝑁

ො𝜇1 𝐶𝑖 − ො𝜇0 𝐶𝑖

➢ The standard error of the outcome regression estimator is typically estimated using a nonparametric 

bootstrap.
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Further discussion on outcome regression estimators

➢ In contrast to completely randomized experiments (where covariates are not confounders), the 

estimator becomes inconsistent if the model is misspecified. Why?

➢ Flexible modeling: can incorporate various machine learning techniques (e.g., linear/logistic 

regression, random forests, SVMs, deep learning) to estimate 

➢ Limitation: Does not inherently ensure the positivity (overlap) assumption; relies on extrapolation in 

regions with limited data, potentially leading to unstable estimates.

- Positivity remains essential for standardization because if Pr 𝐴 = 𝑎|𝐶 = 𝑐 = 0 while Pr(𝐶 = 𝑐) ≠ 0, then 

the conditional mean outcome 𝔼(𝑌|𝐴 = 𝑎, 𝐶 = 𝑐) is undefined.
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Overview of causal inference methods in observational 

studies
➢ Standardization

– Outcome regression

– G-computation

➢ Weighting Methods
– Inverse Probability of Treatment Weighting (IPTW)

– Stabilized weights

➢ Matching Methods
– Exact matching

– Mahalanobis distance matching

➢ Propensity Score Methods
– Propensity score stratification

– Propensity score weighting

– Propensity score in regressions

– Propensity score matching

➢ Double Robust Methods
– Augmented Inverse Probability Weighting (AIPW)

– Targeted Maximum Likelihood Estimation (TMLE)
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Step 1: Construct a regression model for outcome 𝒀: 𝔼(𝑌 𝐴, 𝐶 = 𝑔(𝐴, 𝐶; 𝜃)

Step 2: Fit models with real data to obtain MLE for all parameters: ෡𝔼 (𝑌 𝐴, 𝐶 = 𝑔(𝐴, 𝐶; መ𝜃)

Step 3: Conduct g-computation algorithm using MLE and bootstrap.

(3a) For each individual in your sample (with covariate values 𝐶𝑖), predict the potential outcomes under 

treatment level 𝐴 = 1: ෠𝑌𝑖 1 = 𝑔(1, 𝐶𝑖; መ𝜃).

(3b) For each individual in your sample (with covariate values 𝐶𝑖), predict the potential outcomes under 

treatment level 𝐴 = 0: ෠𝑌𝑖 0 = 𝑔(0, 𝐶𝑖; መ𝜃).

(3c) Compute the means 𝑌 𝑎  for 𝑎 = 1,2 which is the g-computation algorithm approximation estimation of 

𝔼(𝑌 𝑎 ): σ𝑖
෠𝑌𝑖 𝑎 /𝑁

(3d) Bootstrap to obtain the standard errors and corresponding 95% confidence intervals. 

G-computation
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