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The risks and rewards of covariate adjustment
(Kahan et al., 2014)
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Covariate balance and adjustment

Covariate balance 

in the design stage

Discrete covariate

1. Stratified randomized experiments 

2. Paired randomized experiments

Continuous covariate

1. Rerandomization 

Covariate adjustment 

in the analysis stage 

1. Covariate-adjusted Fisherian inference

2. Covariate-adjusted Neymanian inference

3. Regression-based inference with covariates

4. Model-based imputation with covariates

In this part, we will focus on 

A. Covariate adjustment for Fisherian, Neymanian, and regression-based inference in completely randomized 

experiments

B. Implementation of Fisherian, Neymanian, and regression-based inference in stratified randomized experiments

C. Implementation of Fisherian, Neymanian, and regression-based inference in paired randomized experiments

D. The role and methodology of rerandomization
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Regression-based inference in CREs with no covariates 

• Regression-based inference

- Model: 𝑌~𝛽0 + 𝛽𝐴𝐴

- Ordinary least square (OLS) estimator: 

መ𝛽0, መ𝛽𝐴 = argmin
(𝛽0,𝛽𝐴)
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- The OLS estimator is identical to the difference-in-means estimator (Neymanian inference): 
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- Further denote this OLS estimator as Ƹ𝜏𝑜𝑙𝑠.

- It is found that the OLS estimator is an unbiased estimator for both SATE and PATE in CREs. However, the 

conventional estimator for the sampling variance of Ƹ𝜏𝑜𝑙𝑠( denoted as 𝕍𝑜𝑙𝑠) differs from that of Ƹ𝜏𝑠:

෡𝕍𝑜𝑙𝑠 =
𝑁(𝑁1 − 1)
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where the approximation holds with large 𝑁1 and 𝑁0
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Regression-based inference in CREs with covariates 

• Analysis of covariance (ANCOVA)

- ANCOVA, introduced by Fisher (1925), combines analysis of variance (ANOVA) with linear regression to 

enhance the efficiency of estimation.

- Model: 𝑌~𝛽0 + 𝛽𝐴𝐴 + 𝛽𝑋𝑋

- The OLS estimator of 𝛽𝐴 is denoted as Ƹ𝜏𝐹, which is a covariate-adjusted estimator for ATE in CREs. 

• Comparison between ො𝝉𝒐𝒍𝒔 and ො𝝉𝑭 

1. The covariate-adjusted Ƹ𝜏𝐹 is asymptotically unbiased (i.e., consistent) for PATE, but biased in finite samples, 

whereas the unadjusted estimator Ƹ𝜏𝑜𝑙𝑠 is unbiased in finite samples.

2. The consistency of Ƹ𝜏𝐹 is model-free; that is Ƹ𝜏𝐹 remains consistent even if the linear regression model is 

misspecified.

3. Freedman (2008) argued that the covariate-adjusted estimator Ƹ𝜏𝐹 may being less efficient than the unadjusted 

estimator Ƹ𝜏𝑜𝑙𝑠 in unbalanced experiments with treatment effect heterogeneity.
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A brief proof of the model-free property for ො𝝉𝑭   

Without loss of generality, we assume 𝔼 𝑋 = 0.

Consider the limiting objective function (i.e., in large samples):

ℚ 𝛽0, 𝛽𝐴, 𝛽𝑋 = 𝔼 𝑌 − 𝛽0 − 𝛽𝐴𝐴 − 𝛽𝑋𝑋 2

= 𝔼 𝑌 − 𝛽0 − 𝛽𝐴𝐴 2 + 𝔼 𝛽𝑋𝑋 2 − 2𝔼 (𝑌 − 𝛽0 − 𝛽𝐴𝐴) ∙ (𝛽𝑋𝑋)

= 𝔼 𝑌 − 𝛽0 − 𝛽𝐴𝐴 2 + 𝔼 𝛽𝑋𝑋 2 − 2𝔼 𝑌 ∙ 𝛽𝑋𝑋

since 

𝔼 𝑋 = 0 and 𝔼 (𝛽𝐴𝐴) ∙ (𝛽𝑋𝑋) = 0.

𝔼 𝐴 ∙ 𝑋 = 0 holds because of the random samping and the random assignment.

Thus, minimizing ℚ 𝛽0, 𝛽𝐴, 𝛽𝑋  over 𝛽0 and 𝛽𝐴 is quavalent to minimizing the objective function without 

covariates:

 𝔼 𝑌 − 𝛽0 − 𝛽𝐴𝐴 2 .

Therefore, the covariate-adjusted OLS estimator Ƹ𝜏𝐹 is consistent for PATE, regardless of whether the regression 

model is correctly specified.
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Another ANCOVA model: with interactions

• ANCOVA with interactions

- Model: 𝑌~𝛽0 + 𝛽𝐴𝐴 + 𝛽𝑋𝑋 + 𝛽𝐴𝑋𝐴𝑋

- This OLS estimator of 𝛽𝐴 is denoted as Ƹ𝜏𝐼, which is another covariate-adjusted estimator for ATE in CREs. 

- Lin (2013) shows that Ƹ𝜏𝐼 is more efficient than the unadjusted estimator Ƹ𝜏𝑜𝑙𝑠 in CREs  provided that a full set of 

treatment–covariate interactions is included and the covariates 𝑋 are centered. 

• Intuition 

The models of potential outcomes

𝑌 1 = 𝛼1 + 𝛾1𝑋 + 𝜀1

𝑌 0 = 𝛼0 + 𝛾0𝑋 + 𝜀0

Since 

𝑌 = 𝐴𝑌 1 + 1 − 𝐴 𝑌 0 ,

we have 𝑌 = 𝐴 𝛼1 + 𝛾1𝑋 + 𝜀1 + 1 − 𝐴 𝛼0 + 𝛾0𝑋 + 𝜀0 = 𝛼0 + 𝛼1 − 𝛼0 𝐴 + 𝛾0𝑋 + 𝛾1 − 𝛾0 𝐴𝑋 + 𝜀,

where 𝜀 = 𝜀1 + 𝜀0
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Covariate-adjusted Fisherian inference

➢ For covariate-adjusted Fisherian inference under the null hypothesis 𝐻0𝐹, the covariates are treated 

as fixed, and the observed outcomes are also considered fixed. 

➢ Two general strategies to construct the test statistic, as summarized by Zhao and Ding (2021)

Pseudo-outcome strategy
We can construct the test statistic based on residuals from fitted statistical models. We can regress 𝑌𝑖 on 𝑋𝑖 to 

obtain residual 𝜀𝑖, and then treat 𝜀𝑖 as the pseudo-outcome to construct test statistics.

Model-output strategy
We can use a regression coefficient as a test statistic. We can regress 𝑌𝑖 on (𝐴𝑖, 𝑋𝑖) to obtain the coefficient of 𝐴𝑖 

as the test statistic.

➢ In the pseudo-outcome strategy, we only need to run regression once, but in the model-output 

strategy, we need to run regression many times. 

➢ The “regression” can be linear regression, logistic regression, or even machine learning algorithms. 
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Covariate-adjusted Neymanian inference

Stratified estimation strategy
- Partition the sample by discrete covariates into subgroups.

- Conduct treatment effect estimation within each subsample.

- Each subsample yields an unbiased estimate of the local average treatment effect (i.e., CATE).

Aggregating subsample estimates
- Combine the within-subsample estimates using weights based on subgroup sizes.

- The result is an unbiased estimator of ATE.

Limitations with many covariates
- In general, it's impossible to derive estimators that are exactly unbiased under the randomization 

distribution, conditional on covariates.

- Problem arises when some covariate values appear only in treated or control groups.

- This issue is common when covariates take on many distinct values.
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Rerandomization

➢ The difference in means of the covariates

Ƹ𝜏𝑋 =
1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑋𝑖 −
1

𝑁0
෍

𝑖=1

𝑁

(1 − 𝐴𝑖)𝑋𝑖

➢ Under a CRE, Ƹ𝜏𝑋 has expectation zero. However, in any particular randomization, the realized treatment 

allocation may lead to covariate imbalance, meaning the observed value of Ƹ𝜏𝑋 is often not exactly zero.

➢ Mahalanobis distance measures the difference between the treatment and control groups

𝑀 = Ƹ𝜏𝑋
𝑇𝐶𝑜𝑣 Ƹ𝜏𝑋

−1 Ƹ𝜏𝑋 = Ƹ𝜏𝑋
𝑇 𝑁

𝑁1𝑁0
𝑆𝑋

2

−1

Ƹ𝜏𝑋

where 𝑆𝑋
2 = 𝑁 − 1 −1 σ𝑖=1

𝑁 𝑋𝑖𝑋𝑖
𝑇

➢ Rerandomization avoids covariate imbalance by discarding the treatment allocations with large values of 𝑀.

Definition (rerandomization using the Mahalanobis distance, ReM)

Draw ෩𝑨 from CRE and accept it if and only if 𝑀 ≤ 𝑎, for some predetermined constant 𝑎 > 0.
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