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➢ How can statistical methods be applied to assess causal effects in randomized 

experiments?

➢ What is the causal hypothesis underlying inference in randomized experiments?

➢ Should prognostic covariates be adjusted in the analysis of randomized experiments?

Key questions for inference in randomized experiments

Causal Inference, Part 1-3.  An-Shun Tai
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Inference for completely randomized experiments

“Experiments should be analyzed as experiments, not as observational studies” 
− Freedman (2006, p. 691)    

➢ Methods of causal inference in randomized experiments

Randomization-Based Inference 

(Design-Based Inference)
Sampling-Based Inference

Features

✓ Assumes potential outcomes are fixed for 

each subject.

✓ Treats treatment assignment as random.

✓ Used for causal inference based on the 

experimental design.

✓ Assumes treatment assignments are fixed.

✓ Treats outcomes as random, considering subjects 

as a random sample from a larger population.

✓ Used for generalizing results beyond the study 

sample.

Methods
1. Fisher randomization test

2. Neyman repeated sampling inference

3. Regression methods

4. Model-based imputation
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Fisher randomization test
➢ Randomized Experiment on Nocturnal Cough (Paul et al., 2007)

Study Overview:

• Investigates effects of buckwheat honey vs. no active treatment

• Focus on nocturnal cough and sleep difficulties in children with upper respiratory tract infections

Dataset Details:

• 72 children participated

• Measured cough frequency and cough severity

• Scale: 0 (not at all) to 6 (extremely severe)

Potential outcomes Observed variables

Unit Potential (A=1) Control (A=0) Treatment Observed outcome 𝑌

1 𝑌1 1  = 3 𝑌1 0  = ? A=1 𝑌1 = 3

2 𝑌2 1  = 5  𝑌2 0  = ? A=1 𝑌2 = 5

3 𝑌3 1  = 0 𝑌3 0  = ?  A=1 𝑌3 = 0

4 𝑌4 1  = ?  𝑌4 0  = 4 A=0 𝑌4 = 4

5 𝑌5 1  = ? 𝑌5 0  = 0  A=0 𝑌5 = 0

6 𝑌6 1  = ? 𝑌6 0  = 1 A=0 𝑌6 = 1

Table. Cough frequency for the first six units from the honey study

Question:
What types of null hypotheses can be 

considered, and how can corresponding 

inferences be made?

𝐻0:  𝔼 𝑌 1 = 𝔼 𝑌 0

or 

𝐻0: 𝑌 1 = 𝑌 0
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Fisher randomization test (1): Sharp null hypothesis 
1. Specify the null hypothesis

Sharp null hypothesis of no treatment/causal effect (Rubin, 1980)

𝐻0𝐹: 𝑌𝑖 0 = 𝑌𝑖 1  for all units 𝑖 = 1, … , 𝑁

- Under the sharp null hypothesis, it allows each unit to be assigned a hypothetical value (observed 

outcome) for its unobserved potential outcome.

Potential outcomes Observed variables Potential outcomes under the sharp null hypnosis

Unit Potential (A=1) Control (A=0) Treatment Observed outcome Potential (A=1) Control (A=0)

1 𝑌1 1  = 3 𝑌1 0  = ? A=1 𝑌1 = 3 𝑌1 1  = 3 𝑌1 0  = 3 

2 𝑌2 1  = 5  𝑌2 0  = ? A=1 𝑌2 = 5 𝑌2 1  = 5  𝑌2 0  = 5 

3 𝑌3 1  = 0 𝑌3 0  = ?  A=1 𝑌3 = 0 𝑌3 1  = 0 𝑌3 0  = 0  

4 𝑌4 1  = ?  𝑌4 0  = 4 A=0 𝑌4 = 4 𝑌4 1  = 4  𝑌4 0  = 4 

5 𝑌5 1  = ? 𝑌5 0  = 0  A=0 𝑌5 = 0 𝑌5 1  = 0 𝑌5 0  = 0  

6 𝑌6 1  = ? 𝑌6 0  = 1 A=0 𝑌6 = 1 𝑌6 1  = 1 𝑌6 0  = 1 

Table. Cough frequency for the first six units from the honey study
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Fisher randomization test (2): test statistic
2. Choose a test statistic

- Test statistic 𝑇 = 𝑇 ෩𝑨, ෩𝒀 : a real-valued function of observed outcomes and treatment assignments

- Any test statistic for quantifying the contrast between the treatment and control groups can be used.

Potential outcomes Observed variables Potential outcomes under the sharp null hypnosis

Unit Potential (A=1) Control (A=0) Treatment Observed outcome Potential (A=1) Control (A=0)

1 𝑌1 1  = 3 𝑌1 0  = ? A=1 𝑌1 = 3 𝑌1 1  = 3 𝑌1 0  = 3 

2 𝑌2 1  = 5  𝑌2 0  = ? A=1 𝑌2 = 5 𝑌2 1  = 5  𝑌2 0  = 5 

3 𝑌3 1  = 0 𝑌3 0  = ?  A=1 𝑌3 = 0 𝑌3 1  = 0 𝑌3 0  = 0  

4 𝑌4 1  = ?  𝑌4 0  = 4 A=0 𝑌4 = 4 𝑌4 1  = 4  𝑌4 0  = 4 

5 𝑌5 1  = ? 𝑌5 0  = 0  A=0 𝑌5 = 0 𝑌5 1  = 0 𝑌5 0  = 0  

6 𝑌6 1  = ? 𝑌6 0  = 1 A=0 𝑌6 = 1 𝑌6 1  = 1 𝑌6 0  = 1 

Table. Cough frequency for the first six units from the honey study

Difference-in-means

𝑇1
෩𝑨, ෩𝒀 =

σ𝑖=1
𝑁 𝐴𝑖𝑌𝑖

𝑁1
−

σ𝑖=1
𝑁 (1 − 𝐴𝑖)𝑌𝑖

𝑁0

where 𝑁1 = σ𝑖=1
𝑁 𝐴𝑖 and 𝑁0 = σ𝑖=1

𝑁 1 − 𝐴𝑖

Wilcoxon rank sum

𝑇2
෩𝑨, ෩𝒀 =

σ𝑖=1
𝑁 𝐴𝑖𝑅𝑖

𝑁1
−

σ𝑖=1
𝑁 (1 − 𝐴𝑖)𝑅𝑖

𝑁0

where 𝑅𝑖 = σ𝑗=1
𝑁 𝐼(𝑌𝑗 ≤ 𝑌𝑖)
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treatment assignments Statistics

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 Difference-in-means Wilcoxon rank sum

0 0 0 1 1 1 -1.00 -0.67

0 0 1 0 1 1 -3.67 -3.00

0 0 1 1 0 1 -1.00 -0.67

0 0 1 1 1 0 -1.67 -1.67

0 1 0 0 1 1 -0.33 0.00

0 1 0 1 0 1 2.33 2.33

0 1 0 1 1 0 1.67 1.33

0 1 1 0 0 1 -0.33 0.00

0 1 1 0 1 0 -1.00 -1.00

0 1 1 1 0 0 1.67 1.33

1 0 0 0 1 1 -1.67 -1.33

1 0 0 1 0 1 1.00 1.00

1 0 0 1 1 0 0.33 0.00

1 0 1 0 0 1 -1.67 -1.33

1 0 1 0 1 0 -2.33 -2.33

1 0 1 1 0 0 0.33 0.00

1 1 0 0 0 1 1.67 1.67

1 1 0 0 1 0 1.00 0.67

1 1 0 1 0 0 3.67 3.00

1 1 1 0 0 0 1.00 0.67

*Observed values are shown in red.

Fisher randomization test (3): randomization distribution

3. Generate the randomization distribution

Definition 2.1 (Randomization Distribution)
The randomization distribution is the distribution of a test 

statistic (such as the difference in means) obtained by 

(1) permuting the treatment assignments 

(2) while keeping the observed outcomes fixed. 
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treatment assignments Statistics

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 Difference-in-means Wilcoxon rank sum

0 0 0 1 1 1 -1.00 -0.67

0 0 1 0 1 1 -3.67 -3.00

0 0 1 1 0 1 -1.00 -0.67

0 0 1 1 1 0 -1.67 -1.67

0 1 0 0 1 1 -0.33 0.00

0 1 0 1 0 1 2.33 2.33

0 1 0 1 1 0 1.67 1.33

0 1 1 0 0 1 -0.33 0.00

0 1 1 0 1 0 -1.00 -1.00

0 1 1 1 0 0 1.67 1.33

1 0 0 0 1 1 -1.67 -1.33

1 0 0 1 0 1 1.00 1.00

1 0 0 1 1 0 0.33 0.00

1 0 1 0 0 1 -1.67 -1.33

1 0 1 0 1 0 -2.33 -2.33

1 0 1 1 0 0 0.33 0.00

1 1 0 0 0 1 1.67 1.67

1 1 0 0 1 0 1.00 0.67

1 1 0 1 0 0 3.67 3.00

1 1 1 0 0 0 1.00 0.67

*Observed values are shown in red.

Fisher randomization test (3): randomization distribution

3. Generate the randomization distribution

Procedure:
(i) Conduct all possible treatment assignments:

 ෩𝑨(1), ෩𝑨(2), … , ෩𝑨 𝑀

where 𝑀 = 𝐶𝑁1

𝑁

(For example, in the randomized experiment on nocturnal cough, 

there are 𝐶3
6 = 20 possible treatments assignments)

(ii) Calculate the values of the test statistic for each 

possible treatment assignment:

𝔽 = 𝑇 ෩𝑨 1 , ෩𝒀 , 𝑇 ෩𝑨 2 , ෩𝒀 , … , 𝑇 ෩𝑨 𝑀 , ෩𝒀
(Note: In a CRE, each possible treatment assignment to units has 

an equal probability.)

(iii) 𝔽 forms the randomization distribution
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treatment assignments Statistics

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 Difference-in-means Wilcoxon rank sum

0 0 0 1 1 1 -1.00 -0.67

0 0 1 0 1 1 -3.67 -3.00

0 0 1 1 0 1 -1.00 -0.67

0 0 1 1 1 0 -1.67 -1.67

0 1 0 0 1 1 -0.33 0.00

0 1 0 1 0 1 2.33 2.33

0 1 0 1 1 0 1.67 1.33

0 1 1 0 0 1 -0.33 0.00

0 1 1 0 1 0 -1.00 -1.00

0 1 1 1 0 0 1.67 1.33

1 0 0 0 1 1 -1.67 -1.33

1 0 0 1 0 1 1.00 1.00

1 0 0 1 1 0 0.33 0.00

1 0 1 0 0 1 -1.67 -1.33

1 0 1 0 1 0 -2.33 -2.33

1 0 1 1 0 0 0.33 0.00

1 1 0 0 0 1 1.67 1.67

1 1 0 0 1 0 1.00 0.67

1 1 0 1 0 0 3.67 3.00

1 1 1 0 0 0 1.00 0.67

*Observed values are shown in red.

Fisher randomization test (4): Fisher’s exact p-value

4. Compute Fisher’s exact p-value

One-sided

𝑃𝐹 =
1

𝑀
෍

𝑖=1

𝑀

𝐼 𝑇 ෩𝑨𝑜𝑏𝑠, ෩𝒀 ≥ 𝑇 ෩𝑨 𝑖 , ෩𝒀

or 

𝑃𝐹 =
1

𝑀
෍

𝑖=1

𝑀

𝐼(𝑇 ෩𝑨𝑜𝑏𝑠, ෩𝒀 ≤ 𝑇 ෩𝑨 𝑖 , ෩𝒀 )

Two-sided

𝑃𝐹 =
1

𝑀
෍

𝑖=1

𝑀

𝐼( 𝑇 ෩𝑨𝑜𝑏𝑠, ෩𝒀 ≤ 𝑇 ෩𝑨 𝑖 , ෩𝒀 )

Experiment on nocturnal cough

  Difference-in-means: 𝑃𝐹 = 16/20 = 0.8
  Wilcoxon rank sum: 𝑃𝐹 = 16/20 = 0.8
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Neyman vs. Fisher

➢ The limitations of Fisher randomization test 

1. Do not account for treatment effect heterogeneity

2. Do not support inference at the population level

➢ During the development of statistical inference methods, Fisher and Neyman 

introduced distinct frameworks that have significantly influenced causal inference.​

➢ Neyman’s two questions:

1. What would the average outcome be if all units were exposed to the treatment?

2. How did that compare to the average outcome if all units were exposed to the control?
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Neyman repeated sampling inference

➢ Fisher emphasizes hypothesis testing, while Neyman focuses on parameter 

estimation.

➢ The causal estimands of interest in the Neyman inference: 
- Sample average treatment effect (SATE)

- Population average treatment effect (PATE)

Fisher randomization test

• Sharp null hypothesis (No individual 

treatment effect within the analytic sample)  

• Considers only randomness from treatment 

assignment  

• Derives exact p-values

Neyman repeated sampling inference

• Focuses on population/sample average treatment effect  

• Accounts for two sources of randomness:  

1. Random sampling from a (super-) population  

2. Random treatment assignment 

• Derives unbiased estimators and confidence intervals

(considers variability across both repeated treatment 

assignments and repeated sampling)
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SATE and PATE

➢ Sample average treatment effect (SATE)

𝜏𝑠 ≡
1

𝑁
෍

𝑖=1

𝑁

𝑌𝑖 1 − 𝑌𝑖 0 = ത𝑌 1 − ത𝑌(0)

where 𝑁 represents the total number of units in the experiment and ത𝑌 𝑎 = 𝑁−1 σ𝑖=1
𝑁 𝑌𝑖(𝑎).

➢ Population average treatment effect (PATE)

𝜏𝑝 ≡ 𝔼 𝑌𝑖 1 − 𝑌𝑖 0

- Note 1: ITE is 𝜏𝑖 ≡ 𝑌𝑖 1 − 𝑌𝑖 0

- Note 2: SATE is precisely the ATE as previously defined.

➢ Questions for SATE

1. Is SATE a parameter or an estimator?

2. In SATE, are 𝑌𝑖 1 , 𝑌𝑖 0 𝑖=1
𝑁  random or fixed? How does this compare to PATE

3. Who cares about SATE, and why it is important?



Causal Inference, Part 1-3.  An-Shun Tai 13

Misunderstandings between experimentalists and 

observationalists 
(Imai, King, and Stuart, 2008)

SATE (𝜏𝑠) PATE (𝜏𝑝)

Scope Applies to study sample Applies to entire population

Estimability Directly computed from study data Requires extrapolation beyond sample

Generalizability Limited to sample Requires assumptions for external validity

Bias risks Susceptible to selection bias if sample is not random More representative but harder to estimate

➢ SATE is useful for internal validity (causal inference within a study).

➢ PATE is necessary for external validity (generalizing findings to a broader population).

➢ Bridging the gap between SATE and PATE requires either:
1. Random sampling,

2. Statistical adjustments (e.g., weighting, regression models),

3. Replicating studies in diverse settings.
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Estimator of SATE 

➢ Reminder: In SATE inference under CRE, ෩𝒀 1 , ෩𝒀 0 = 𝑌𝑖 1 , 𝑌𝑖 0 𝑖=1
𝑁  are fixed, and the only source 

of randomness comes from the random treatment assignments.

➢ The difference-in-means estimator of SATE

Ƹ𝜏𝑠 =
1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑌𝑖 −
1

𝑁0
෍

𝑖=1

𝑁

(1 − 𝐴𝑖)𝑌𝑖

where 𝑁1 and 𝑁0 ​represent the number of units in the treatment and control groups, respectively.

- Is Ƹ𝜏𝑠 an unbiased estimator for SATE?

- How can you conduct inference for SATE by using Ƹ𝜏𝑠, such as deriving a confidence interval?
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Estimator of SATE 

Theorem 2.1 (Unbiasedness and sampling variance in estimating SATE)

Under a CRE, the difference-in-means estimator Ƹ𝜏𝑠 

(1) is unbiased for 𝜏𝑠 (SATE) and 

(2) has sampling variance 

𝑉𝑎𝑟 Ƹ𝜏𝑠|෩𝒀 1 , ෩𝒀 0 =
𝑆1

2

𝑁1
+

𝑆0
2

𝑁0
−

𝑆𝜏
2

𝑁
where 

𝑆𝑎
2 =

1

𝑁 − 1
෍

𝑖=1

𝑁

𝑌𝑖 𝑎 − ത𝑌 𝑎
2

 𝑎𝑛𝑑 𝑆𝜏
2 =

1

𝑁 − 1
෍

𝑖=1

𝑁

𝜏𝑖 − 𝜏𝑠
2 .

➢ It demonstrates that Ƹ𝜏𝑠 is a reasonable estimator for SATE under a CRE.

➢ 𝑆𝜏
2 includes both potential outcomes 𝑌𝑖 1  and 𝑌𝑖 0 , making it non-estimable from observed data.

➢ Neyman suggested that, in practice, 𝑆𝜏
2 is often ignored when estimating the sampling variance of Ƹ𝜏𝑠.
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Theorem 2.2

Under the constant additive treatment effect assumption (i.e., the individual treatment effect 𝜏𝑖 (≡ 𝑌𝑖 1 −
𝑌𝑖 0 ) is constant), we have 

(1)  𝑆𝜏
2 = 0 and

(2) an unbiased estimator for the sampling variance 

෡𝕍 =
መ𝑆1

2

𝑁1
+

መ𝑆0
2

𝑁0

where 

መ𝑆1
2 =

1

𝑁1 − 1
෍

𝑖=1

𝑁

𝐴𝑖 𝑌𝑖 − ത𝑌𝐴=1
2 ,

መ𝑆0
2 =

1

𝑁0 − 1
෍

𝑖=1

𝑁

(1 − 𝐴𝑖) 𝑌𝑖 − ത𝑌𝐴=0
2 ,

ത𝑌𝐴=1 =
1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑌𝑖 , and ത𝑌𝐴=0 =
1

𝑁0
෍

𝑖=1

𝑁

(1 − 𝐴𝑖)𝑌𝑖

Estimator of the sampling variance 
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Further insights on ෡𝕍

➢ It is important to note that if there is heterogeneity in treatment effects—meaning the constant additive 

treatment effect assumption does not hold—then ෡𝕍 is a conservative estimator of the sampling 

variance:

𝔼 ෡𝕍|෩𝒀 1 , ෩𝒀 0 − 𝑉𝑎𝑟 Ƹ𝜏𝑠|෩𝒀 1 , ෩𝒀 0 =
𝑆𝜏

2

𝑁
≥ 0.

➢ Even when the assumption of an additive treatment effect may be known to be inaccurate, ෡𝕍 remains 

widely used (in two-sample testing).

1. The confidence interval for SATE constructed using ෡𝕍 is conservative.

2. For PATE, in a (super-)population, ෡𝕍 is an unbiased estimator for the sampling variance of Ƹ𝜏𝑠.
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Proof of Theorem 2.1

Unbiasedness
First, the difference-in-means estimator Ƹ𝜏𝑠 can be expressed as 

Ƹ𝜏𝑠 =
1

𝑁1
෍

𝑖=1

𝑁

𝐴𝑖𝑌𝑖(1) −
1

𝑁0
෍

𝑖=1

𝑁

(1 − 𝐴𝑖)𝑌𝑖(0)

Then we have

𝔼 Ƹ𝜏𝑠
෩𝒀 1 , ෩𝒀 0 =

1

𝑁1
෍

𝑖=1

𝑁

𝔼(𝐴𝑖|෩𝒀 1 , ෩𝒀 0 )𝑌𝑖(1) −
1

𝑁0
෍

𝑖=1

𝑁

{1 − 𝔼(𝐴𝑖|෩𝒀 1 , ෩𝒀 0 )}𝑌𝑖(0)

=
1

𝑁1
෍

𝑖=1

𝑁

𝔼(𝐴𝑖)𝑌𝑖(1) −
1

𝑁0
෍

𝑖=1

𝑁

{1 − 𝔼(𝐴𝑖)}𝑌𝑖(0)

=
1

𝑁1
෍

𝑖=1

𝑁 𝑁1

𝑁
𝑌𝑖(1) −

1

𝑁0
෍

𝑖=1

𝑁 𝑁0

𝑁
𝑌𝑖 0

= 𝜏𝑠
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Estimator of PATE 

Theorem 2.3 (Unbiasedness and sampling variance in estimating PATE)

Under a CRE, the difference-in-means estimator Ƹ𝜏𝑠 

(1) is unbiased for 𝜏𝑝 (PATE) and 

(2) has sampling variance 

𝑉𝑎𝑟 Ƹ𝜏𝑠 =
𝜎1

2

𝑁1
+

𝜎0
2

𝑁0

where 𝜎𝑎
2 is the population variance of 𝑌(𝑎) for 𝑎 = 1,2

➢ Unbiasedness is straightforward to demonstrate, as the units/samples are randomly drawn from the 

population.

➢ The derivation of sampling variance  (over repeated sampling and repeated treatment assignments):

By the the law of total variance,

𝑉𝑎𝑟 Ƹ𝜏𝑠 = 𝑉𝑎𝑟 𝔼 Ƹ𝜏𝑠
෩𝒀 1 , ෩𝒀 0 + 𝔼 𝑉𝑎𝑟 Ƹ𝜏𝑠

෩𝒀 1 , ෩𝒀 0

=
1

𝑁
𝑉𝑎𝑟 𝑌𝑖 1 − 𝑌𝑖 1 +

𝜎1
2

𝑁1
+

𝜎0
2

𝑁0
−

1

𝑁
𝑉𝑎𝑟 𝑌𝑖 1 − 𝑌𝑖 1 =

𝜎1
2

𝑁1
+

𝜎0
2

𝑁0
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Confidence interval 

➢ Li and Ding (2017) demonstrated the asymptotic Normality of Ƹ𝜏𝑠 based on the finite population central 

limit theorem.

➢ Wald-type large-sample confidence interval is given by

Ƹ𝜏𝑠 ± 𝑧1−𝛼/2
෡𝕍

where 𝑧1−𝛼/2 is the 1 − 𝛼/2 upper quantile of the standard Normal distribution.
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