
STAT6061/STAT5008 – Causal Inference

Part 1-3. Assumptions and Identification

An-Shun Tai

1Department of Statistics

National Cheng Kung University

2Institute of Statistics and Data Science

National Tsing Hua University 



Causal Inference, Part 1-3.  An-Shun Tai 2

Identification and assumptions

➢ Causal effects (causal parameters) are functions of potential outcomes, whereas 

statistical parameters are functions of the distribution of observed data.

➢ Identification – the key step in causal inference – is the process of linking causal 

parameters to statistical parameters derived from observed data.

➢ However, there is no free lunch; the identification process requires certain assumptions, 

known as identification assumptions.

➢ The key identifying assumptions pertain to the treatment assignment mechanism.

Causal effect

(Causal parameter) Statistical parameter Estimators Estimates

Identification

Estimation
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➢ The fundamental bridge between the potential outcomes (𝑌𝑖 0 , 𝑌𝑖(1)) and observed 

outcome 𝑌𝑖  :  
𝑌𝑖 = 𝐴𝑖𝑌𝑖 1 + 1 − 𝐴𝑖 𝑌𝑖(0)

Note that, in this part, 𝐴𝑖 is the treatment assignment indicator for unit 𝑖.

➢ The difference in means

𝔼(𝑌𝑖 𝐴𝑖 = 1 − 𝔼(𝑌𝑖 𝐴𝑖 = 0
= 𝔼(𝑌𝑖 1 𝐴𝑖 = 1 − 𝔼(𝑌𝑖 0 𝐴𝑖 = 0
= 𝔼(𝑌𝑖 1 − 𝑌𝑖 0 𝐴𝑖 = 1 + {𝔼(𝑌𝑖 0 𝐴𝑖 = 1 − 𝔼 𝑌𝑖 0 𝐴𝑖 = 0

➢ The first part is the ATT, while the second captures hidden bias arising from the 

treatment assignment mechanism, leading to characteristic differences between treated 

and untreated groups.

Treatment assignment mechanism
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𝔼 𝑌 1  vs. 𝔼 𝑌 0 𝔼 𝑌 𝐴 = 1  vs. 𝔼 𝑌 𝐴 = 0

Treatment assignment mechanism

difference in meansATT/ATE
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Treatment assignment mechanism

➢ This demonstrates that a well-designed treatment assignment mechanism can eliminate 

hidden bias, i.e., 

𝔼(𝑌𝑖 0 𝐴𝑖 = 1 − 𝔼 𝑌𝑖 0 |𝐴𝑖 = 0 = 0,

allowing the naïve difference-in-means approach to accurately estimate the causal 

effect (ATE or ATT).

❑ How does causal inference differ from association inference?

✓ Epidemiological perspective: addressing confounding variables/common causes

✓ Clinical perspective: necessity of intervention

✓ Statistical perspective: controlling for hidden bias

✓ Experimental perspective: importance of treatment assignment mechanism
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Probabilistic rule for treatment assignment mechanism

➢ The assignment mechanism is a probabilistic rule that determines the probabilities of 

all 2𝑁 possible assignment vectors ෩𝑨 = (𝐴1, … , 𝐴𝑁) for 𝑁 units, given potential 

outcomes (෩𝒀 0 , ෩𝒀(1)) and covariates (෩𝑪).

Definition (Treatment Assignment Mechanism) (Imbens and Rubin, 2015)

Given a population of N units, the assignment mechanism is a row-exchangeable function 

Pr ෩𝑨 ෩𝑪, ෩𝒀 0 , ෩𝒀 1

taking on values in [0, 1], satisfying

෍

෥𝒂 ∈ 0,1 𝑁

Pr ෩𝑨 = ෥𝒂 ෩𝑪, ෩𝒀 0 , ෩𝒀 1 = 1

for all ෩𝑪, ෩𝒀 0 , and ෩𝒀 1 .

➢ The treatment assignment mechanism will be discussed in detail in Part 2.1.
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Examples for two units

➢ Ignoring ෩𝑪, suppose 𝑁 = 2. The 22 = 4 possible assignment vectors ෩𝑨 are given by

Ω = 0,0 , 1,0 , 0,1 , 1,1

Example 1 (clueless doctor). 

𝑃𝑟 ෩𝑨 ෩𝒀 0 , ෩𝒀 1 =
1

4
, ෩𝑨 ∈ Ω

Example 2 (perfect doctor). 

𝑃𝑟 ෩𝑨
𝑌1 1 − 𝑌1 0 > 0,

𝑌2 1 − 𝑌2 0 > 0
= ቊ

1 , ෩𝑨 = (1,1)
0 , 𝑂. 𝑊.

, 𝑃𝑟 ෩𝑨
𝑌1 1 − 𝑌1 0 > 0,

𝑌2 1 − 𝑌2 0 ≤ 0
= ቊ

1 , ෩𝑨 = (1,0)
0 , 𝑂. 𝑊.

𝑃𝑟 ෩𝑨
𝑌1 1 − 𝑌1 0 ≤ 0,

𝑌2 1 − 𝑌2 0 > 0
= ቊ

1 , ෩𝑨 = (0,1)
0 , 𝑂. 𝑊.

, 𝑃𝑟 ෩𝑨
𝑌1 1 − 𝑌1 0 ≤ 0,

𝑌2 1 − 𝑌2 0 ≤ 0
= ቊ

1 , ෩𝑨 = (0,0)
0 , 𝑂. 𝑊.
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Perfect doctor (treatment for high blood pressure)

Unit Treatment (A=1) Control (A=0) Causal effect

𝑌1 𝑌1 1  = 145 𝑌1 0  = 150 Improvement

𝑌2 𝑌2 1  = 146  𝑌2 0  = 145 None

𝑌3 𝑌3 1  = 145 𝑌3 0  = 140  None

𝑌4 𝑌4 1  = 144  𝑌4 0  = 140 None

𝑌5 𝑌5 1  = 145 𝑌5 0  = 145  None

𝑌6 𝑌6 1  = 145 𝑌6 0  = 160 Improvement

Science Table
Unit Treatment (A=1) Control (A=0) Treatment

𝑌1 𝑌1 1  = 145 𝑌1 0  = ? A=1

𝑌2 𝑌2 1  = ?  𝑌2 0  = 145 A=0

𝑌3 𝑌3 1  = ? 𝑌3 0  = 140  A=0

𝑌4 𝑌4 1  = ?  𝑌4 0  = 140 A=0

𝑌5 𝑌5 1  = ? 𝑌5 0  = 145  A=0

𝑌6 𝑌6 1  = 145 𝑌6 0  = ? A=1

Observed outcomes (perfect doctor)

ATE estimate = 145 − 146.7 < 0 Difference-in-means estimate = 

145 − 142.5 > 0



Causal Inference, Part 1-3.  An-Shun Tai 9

Perfect doctor (treatment for high blood pressure)

Unit Treatment (A=1) Control (A=0) Causal effect

𝑌1 𝑌1 1  = 145 𝑌1 0  = 150 Improvement

𝑌2 𝑌2 1  = 146  𝑌2 0  = 145 None

𝑌3 𝑌3 1  = 145 𝑌3 0  = 140  None

𝑌4 𝑌4 1  = 144  𝑌4 0  = 140 None

𝑌5 𝑌5 1  = 145 𝑌5 0  = 145  None

𝑌6 𝑌6 1  = 145 𝑌6 0  = 160 Improvement

Science Table
Unit Treatment (A=1) Control (A=0) Treatment

𝑌1 𝑌1 1  = 145 𝑌1 0  = ? A=1

𝑌2 𝑌2 1  = 146  𝑌2 0  = ? A=1

𝑌3 𝑌3 1  = 145 𝑌3 0  = ?  A=1

𝑌4 𝑌4 1  = ?  𝑌4 0  = 140 A=0

𝑌5 𝑌5 1  = ? 𝑌5 0  = 145  A=0

𝑌6 𝑌6 1  = ? 𝑌6 0  = 160 A=0

Observed outcomes (clueless doctor)

ATE estimate = 145 − 146.7 < 0 Difference-in-means estimate = 

145.3 − 148.3 < 0

➢ In causal inference, the treatment assignment mechanism is essential for identifying 

causal effects.
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Unconfounded assignment

Definition (Unconfounded Assignment Mechanism) (Imbens and Rubin, 2015)

An assignment mechanism is unconfounded if it does not depend on the potential outcomes:

𝑃 ෩𝑨 ෩𝑪, ෩𝒀 0 , ෩𝒀 1 = 𝑃 ෩𝑨 ෩𝑪 

for all ෩𝑨, ෩𝑪, ෩𝒀 0 , and ෩𝒀 1 .

➢ The treatment assignment mechanism in Example 1 is unconfounded, whereas the one 

in Example 2 is not.

➢ Commonly represented using conditional independence:

{෩𝒀 0 , ෩𝒀 1 } ⊥ ෩𝑨|෩𝑪
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Identification assumption: ignorability or exchangeability  

Assumption (ignorability or exchangeability) 

𝑌𝑖 𝑎 ⊥ 𝐴𝑖|𝐶𝑖  for 𝑎 = 0, 1

Assumption (strong ignorability or full exchangeability) 

𝑌𝑖 1 , 𝑌𝑖 0 ⊥ 𝐴𝑖|𝐶𝑖

• ​The term ignorability (Rubin, 1978) in causal inference signifies that, when estimating causal effects, 

we can "ignore" the process by which units are assigned to treatments.

• Exchangeability means that, on average, swapping the treatment and control groups would not change 

the observed outcomes, ensuring their comparability.

• Show that 𝐴1 ⊥ 𝐵|𝐶 and 𝐴2 ⊥ 𝐵|𝐶 not imply 𝐴1, 𝐴2 ⊥ 𝐵|𝐶.
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Identification assumption: ignorability or exchangeability  

➢ The exchangeability assumption, also known as the unconfoundedness assumption, 

ensures that no unmeasured confounders influence both the treatment and the outcome.

➢ Outcome data-generating process: 

𝑌 1 = 𝑔1 𝐶, 𝜀1 ; 𝑌 0 = 𝑔0(𝐶, 𝜀0)

𝐴 = 𝐼 𝑔𝐴 𝐶, 𝜀𝐴 ≥ 0

- 𝑔1 ∙ , 𝑔0(∙), and 𝑔𝐴(∙) are general functions

- 𝜀1, 𝜀0, and 𝜀𝐴 are random error terms satisfying 𝜀1, 𝜀0 ⊥ 𝜀𝐴

This data-generating process guarantees the exchangeability and full exchangeability hold, 

i.e., {𝑌 1 , 𝑌 0 } ⊥ 𝐴|𝐶
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Identification assumption: ignorability or exchangeability  

➢ Suppose there exists an unmeasured ”common cause” 𝑈.

➢ Outcome data-generating process changes to 

𝑌 1 = 𝑔1 𝐶, 𝑈, 𝜀1 ; 𝑌 0 = 𝑔0(𝐶, 𝑈, 𝜀0)

𝐴 = 𝐼 𝑔𝐴 𝐶, 𝑈, 𝜀𝐴 ≥ 0

→ The exchangeability and full exchangeability {𝑌 1 , 𝑌 0 } ⊥ 𝐴|𝐶 do not hold in 

general.

➢ This approach is known as the Non-Parametric Structural Equation Model (NPSEM).
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Identification assumption: SUTVA (1)  

No interference assumption: Unit i’s potential outcomes do not depend on other units’ 

treatments. This is sometimes called the no-interference assumption.

➢ Common scenarios of violating no interference assumption 

• Spillover Effects: When treatment affects untreated individuals (e.g., herd immunity in vaccination 

studies).

• Peer/Network Effects: Influence within social or professional networks (e.g., students sharing 

knowledge).

• Clustered Treatment Assignment: Group-level treatment leads to within-group interference (e.g., 

community-wide policies).

• Market or Environmental Effects: Indirect effects on untreated units due to system-wide changes (e.g., 

wage policy shifts).
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Consistency assumption: There are no other versions of the treatment. Equivalently, we 

require that the treatment level be well defined or have no ambiguity at least for the 

outcome of interest. 

➢ Common scenarios of violating no interference assumption.

• Treatment Variability: Different ways of delivering the same treatment produce different effects (e.g., 

drug formulations).

• Misclassification of Treatment: The assigned treatment does not match the received treatment (e.g., 

non-adherence in clinical trials).

• Undefined Treatment Condition: Ambiguity in defining treatment levels (e.g., "exposure to pollution" 

with no clear threshold). 

Identification assumption: SUTVA (2)  
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Stable Unit Treatment Value Assumption, SUTVA: Both no interference assumption 

and consistency assumption hold.

➢ SUTVA is essential for defining well-behaved potential outcomes and ensuring that 

causal effects can be estimated without ambiguity. 

• Ensures that causal effects are well-defined and comparable.

• Prevents bias in causal inference by avoiding spillover effects or treatment inconsistencies.

• Allows for valid interpretation of estimated treatment effects.

➢ Mathematical Representation

No interference assumption: 𝑌𝑖 𝑎1, 𝑎2, … 𝑎𝑖 , … 𝑎𝑛 = 𝑌𝑖(𝑎𝑖)
Consistency assumption: 𝑌𝑖 𝑎 = 𝑌𝑖, if 𝐴𝑖 = 𝑎

Identification assumption: SUTVA (3)  
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Identification assumption: positive/overlap (1)  

Positive assumption, also known as the overlap assumption, ensures that every unit 

has a nonzero probability of receiving either treatment or control.

➢ Formally, for all covariate values 𝐶,

0 < Pr 𝐴 = 1 𝐶 < 1
This means that there is sufficient overlap in the distributions of treated and untreated groups.

➢ Why is positivity important?

• Ensures that comparisons between treatment and control groups are valid.

• Prevents extreme extrapolation beyond observed data.

• Required for methods like inverse probability weighting (IPW) and propensity score matching.
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Identification assumption: positive/overlap (2)  

Positive assumption, also known as the overlap assumption, ensures that every unit 

has a nonzero probability of receiving either treatment or control.

➢ Formally, for all covariate values 𝐶,

0 < Pr 𝐴 = 1 𝐶 < 1
This means that there is sufficient overlap in the distributions of treated and untreated groups.

➢ When is positivity violated?

• Some groups always receive treatment or never receive treatment (e.g., a policy only applied to a 

specific population).

• Perfect predictors of treatment assignment exist (e.g., age > 65 always leads to treatment).

• Sparse data regions where certain covariate values only appear in one group.
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Identification

➢ Identification is the process of linking causal parameters to statistical parameters 

derived from observed data.

𝔼(𝑌 𝑎 ) = න 𝔼(𝑌 𝑎 𝐶 = 𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

(Law of iterated expectations)

= න 𝔼(𝑌 𝑎 𝐶 = 𝑐, 𝐴 = 𝑎 Pr(𝐶 = 𝑐)𝑑𝑐

(Exchangeability assumption)

= න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 𝑎 Pr(𝐶 = 𝑐)𝑑𝑐

(Consistency assumption)
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Identification, causal effects

➢  Causal effect on the difference scale (ATE): 

𝔼 𝑌 1 − 𝔼 𝑌 0 = න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐 − න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐

 

➢ Causal effect on the ratio scale: 
𝔼 𝑌 1

𝔼 𝑌 0
=

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐

➢ Causal effect on the odds ratio scale: 

𝑃 𝑌 1 = 1 1 − 𝑃 𝑌 0 = 1

𝑃 𝑌 0 = 1 1 − 𝑃 𝑌 1 = 1

=
׬ Pr(𝑌 = 1|𝐴 = 1, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ Pr(𝑌 = 1|𝐴 = 0, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐]

׬ Pr(𝑌 = 1|𝐴 = 0, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ Pr(𝑌 = 1|𝐴 = 1, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐]
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Link to standard statistical models

Far better an approximate answer to the right question, which 

is often vague, than an exact answer to the wrong question, 

which can always be made precise.

- John Tukey - 

Linear model: 𝑌 = 𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶 + 𝜀

Logistic model:  logit Pr 𝑌 = 1 = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶

Log-Linear model: log(𝑌) = 𝛾0 + 𝛾𝐴𝐴 + 𝛾𝐶𝐶

Do these parameters (i.e., 𝛼𝐴, 𝛽𝐴, and 𝛾𝐴) represent the causal effects of interest? 
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Link to standard statistical models: Linear model

For linear model: 
𝑌 = 𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶 + 𝜀

Causal effect on the difference scale (ATE):

𝔼 𝑌 1 − 𝔼 𝑌 0 = න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐 − න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐

= න 𝛼0 + 𝛼𝐴 + 𝛼𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐 − න 𝛼0 + 𝛼𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

= 𝛼𝐴

Causal effect on the ratio scale: 

𝔼 𝑌 1

𝔼 𝑌 0
=

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐
=

׬ 𝛼0 + 𝛼𝐴 + 𝛼𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

׬ 𝛼0 + 𝛼𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐
=

𝛼0 + 𝛼𝐴 + 𝛼𝐶𝔼(𝐶)

𝛼0 + 𝛼𝐶𝔼(𝐶)

➢ Under the given identification assumptions, 𝛼𝐴 can be interpreted as ATE but not the 

causal effect on the ratio scale 
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Link to standard statistical models: Log-Linear model

For log-linear model: 
log(𝑌) = 𝛾0 + 𝛾𝐴𝐴 + 𝛾𝐶𝐶

Causal effect on the difference scale (ATE):

𝔼 𝑌 1 − 𝔼 𝑌 0 = න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐 − න 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐

= න 𝑒𝑥𝑝(𝛾0 + 𝛾𝐴 + 𝛾𝐶𝑐)Pr(𝐶 = 𝑐)𝑑𝑐 − න 𝑒𝑥𝑝(𝛾0 + 𝛾𝐶𝑐)Pr(𝐶 = 𝑐)𝑑𝑐

Causal effect on the ratio scale: 

𝔼 𝑌 1

𝔼 𝑌 0
=

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 1 Pr(𝐶 = 𝑐)𝑑𝑐

׬ 𝔼(𝑌 𝐶 = 𝑐, 𝐴 = 0 Pr(𝐶 = 𝑐)𝑑𝑐
=

׬ 𝑒𝑥𝑝 𝛾0 + 𝛾𝐴 + 𝛾𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐

׬ 𝑒𝑥𝑝 𝛾0 + 𝛾𝐶𝑐 Pr(𝐶 = 𝑐)𝑑𝑐
= 𝑒𝛾𝐴

➢ Under the given identification assumptions, 𝑒𝛾𝐴  represents the causal effect on the ratio 

scale but not on the difference scale, whereas 𝛾𝐴 can be interpreted as the causal effect 

on the log-ratio scale.
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Link to standard statistical models: Logistic model

For logistic model: 
logit Pr 𝑌 = 1 = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶

Causal effect on the odds ratio scale: 

Pr 𝑌 1 = 1 1 − Pr 𝑌 0 = 1

Pr 𝑌 0 = 1 1 − Pr 𝑌 1 = 1

=
׬ Pr(𝑌 = 1|𝐴 = 1, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ Pr(𝑌 = 1|𝐴 = 0, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐]

׬ Pr(𝑌 = 1|𝐴 = 0, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ Pr(𝑌 = 1|𝐴 = 1, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐]

=
׬ 𝑒𝑥𝑝𝑖𝑡 𝛽0 + 𝛽𝐴 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ 𝑒𝑥𝑝𝑖𝑡 𝛽0 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐]

׬ 𝑒𝑥𝑝𝑖𝑡 𝛽0 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐 × [1 − ׬ 𝑒𝑥𝑝𝑖𝑡 𝛽0 + 𝛽𝐴 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐]

where 𝑒𝑥𝑝𝑖𝑡 𝑥 = 𝑒𝑥/(1 + 𝑒𝑥).

➢ Therefore, 𝛽𝐴 (or any function of 𝛽𝐴) cannot be used to represent the causal (log) OR.
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Link to standard statistical models: Logistic model

For logistic model: 
logit Pr 𝑌 = 1|𝐴, 𝐶 = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶

➢ However, under the rare disease assumption (typically less than 10%), 𝛽𝐴 can be 

interpreted as the approximate causal log odds ratio.

Under the rare disease assumption, 

1. The causal odds ratio (OR) can be approximated by the causal risk ratio (RR):

Pr 𝑌 1 = 1 1 − Pr 𝑌 0 = 1

Pr 𝑌 0 = 1 1 − Pr 𝑌 1 = 1
=

Pr 𝑌 1 = 1

Pr 𝑌 0 = 1

2. The logistic function can be approximated by the log function:

logit Pr 𝑌 = 1|𝐴, 𝐶 ≈ log Pr 𝑌 = 1|𝐴, 𝐶
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Link to standard statistical models: Logistic model

For logistic model: 
logit Pr 𝑌 = 1|𝐴, 𝐶 = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶

➢ However, under the rare disease assumption (typically less than 10%), 𝛽𝐴 can be 

interpreted as the approximate causal log odds ratio.

Causal effect on the odds ratio scale ≈

Pr 𝑌 1 = 1

Pr 𝑌 0 = 1
=

׬ Pr(𝑌 = 1|𝐴 = 1, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐

׬ Pr(𝑌 = 1|𝐴 = 0, 𝐶 = 𝑐) Pr 𝐶 = 𝑐 𝑑𝑐

≈
׬ 𝑒𝑥𝑝 𝛽0 + 𝛽𝐴 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐

׬ 𝑒𝑥𝑝 𝛽0 + 𝛽𝐶c Pr 𝐶 = 𝑐 𝑑𝑐
= 𝑒𝛽𝐴
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