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How to define and estimate causal effects?

• Suppose the three causal conditions are met, and all sources of systematic bias have 

been properly adjusted for.

• Can we then use a conventional regression model to assess causality? Consider the 

following two scenarios.

Scenario 1: assessing the causal effect of smoking on lung function (continuous outcome) 

𝑌lung function = 𝛼0 + 𝛼𝐴𝐴smoking + 𝛼𝐶𝐶confounder + 𝜀

Scenario 2: assessing the causal effect of smoking on lung cancer development  (binary outcome) 

logit 𝑃 𝑌lung cancer development = 1 = 𝛽0 + 𝛽𝐴𝐴smoking + 𝛽𝐶𝐶confounder

• Do these parameters (i.e., 𝛼𝐴 and 𝛽𝐴) represent the causal effects of interest? See Part 

1.3 for the answer.  
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• Remember that causality is fundamentally tied to a manipulation or intervention 

(such as treatment, exposure, action, or strategy) applied to a unit.

• Accordingly, the causal effect of a treatment or exposure on the outcome for unit i 

can be established if there is a difference between ”the outcome of unit i when 

receiving the treatment/exposure” and “the outcome of unit i when not receiving 

it”—measured at the same time.

• Only one outcome can be observed, while the other is the counterfactual or 

potential outcome.

• Building on this concept, let's introduce the counterfactual framework, also known 

as the potential outcome framework or the Rubin Causal Model (Rubin, 1974).

Counterfactual framework

Causal Inference, Part 1-2.  An-Shun Tai



Causal Inference, Part 1-2.  An-Shun Tai 4

Counterfactual framework

• Setup
 𝑌: Outcome of interest (e.g., disease)

 𝐴: Intervention (treatment or exposure)

(NOTE1: In this course, we will primarily focus on binary treatment variables for 𝐴: 1 for the treatment 

and 0 for the control)

 𝐶: Pretreatment measured confounders/covariates

 𝑈: Pretreatment unmeasured confounders/covariates
(NOTE2: Post-treatment confounders add complexity to causal inference. We will explore this further in 

Part 8.)  

Pretreatment 

confounders (C)

Teatment (A) Outcome(Y) Pretreatment 

confounders (C)

Teatment (A) Outcome(Y)

Unmeasured 

confounder U)
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Counterfactual framework

• Setup
Consider a study with 𝑛 experimental units, indexed by 𝑖 = 1, … , 𝑛, drawn from a well-

defined target population, whose outcomes will be compared.

For each unit 𝑖, the observed data are (𝐶𝑖 , 𝐴𝑖 , 𝑌𝑖).

Definition of counterfactual outcomes (potential outcomes)
For each unit 𝑖, there are two potential outcomes :

- 𝑌𝑖 1 : the outcome if unit 𝑖 received the treatment,

- 𝑌𝑖 0 : the outcome if unit 𝑖 did not receive the treatment (control).

• For any given unit, only one of the two outcomes can be observed. The unobserved 

outcome is called as the “counterfactual outcome” or “potential outcome”.



Causal Inference, Part 1-2.  An-Shun Tai 6

Science Table (God’s Table)

Unit Aspirin (A=1) No Aspirin (A=0)

𝑌1 No Headache (NH) ?

𝑌2 ? Headache (H)

𝑌3 ? No Headache (H)

𝑌4 Headache (H) ?

Observations
Unit Aspirin (A=1) No Aspirin (A=0) Causal effect

𝑌1 𝑌1 1  = NH 𝑌1 0  = NH None

𝑌2 𝑌2 1  = NH  𝑌2 0  = H 
Improvement due 

to Aspirin

𝑌3 𝑌3 1  = H 𝑌3 0  = NH 
Aspirin-induced 

side effect

𝑌4 𝑌4 1  = H 𝑌4 0  = H None

Science Table

• Definition of the causal effect
The causal effect for unit j is intuitively defined as the contrast between 𝑌𝑖 1  and 

𝑌𝑖 0 , such as the difference 

𝑌𝑖 1 − 𝑌𝑖 0 .
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Causal effects (Causal estimands, Causal parameters)

➢ Causal effects (also referred to as causal estimands, causal parameters) are the 

functions of potential outcomes 𝑌𝑖 1 , 𝑌𝑖 0 𝑖=1
𝑛 .

Individual Treatment Effect, ITE (or Individual Causal Effect, ICE) 

𝜏𝑖 ≡ 𝑌𝑖 1 − 𝑌𝑖 0

Average Treatment Effect, ATE (or Average Causal Effect, ACE)* 

𝔼 𝑌𝑖 1 − 𝔼 𝑌𝑖 0 = 𝔼𝑐 𝜏𝑖 𝑐

Conditional Average Treatment Effect, CATE

𝔼 𝑌𝑖 1 |𝑋𝑖 = 𝑥 − 𝔼 𝑌𝑖 0 |𝑋𝑖 = 𝑥

*This ATE is sometimes referred to as the causal risk differences (RD).
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Some questions

1. Statistical parameters vs. causal parameter
Do you define statistical parameters first or establish the statistical model first?

Do you start with a scientific problem or formulate the statistical model first?

⇒ Causal effects are defined by potential outcomes, not by model parameters.

2. ITE vs. ATE
Can individual-level causal effects be directly estimated?  

Can population-level causal effects be estimated?

⇒ Causal inference as a fundamental missing data challenge

3. Why do we need the conditional causal effect (i.e., CATE)?
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Estimand, Estimator, Estimate

Estimand

- Estimand is the specific quantity or 

parameter that a study aims to 

estimate to address a scientific 

problem.

- It defines the target of estimation 

before any data analysis begins, 

ensuring clarity in what the study 

seeks to measure.

Estimator A

Estimator B

Estimator C

Estimate A

Estimate B

Estimate C

- Estimator is the statistical 

method used to estimate 

the estimand/parameter.

- Estimate is the numerical 

result obtained from applying 

the estimator to data.

DATA



Causal Inference, Part 1-2.  An-Shun Tai 10

Conditional causal effect

𝔼 𝑌𝑖 1 |𝑋𝑖 = 𝑥 − 𝔼 𝑌𝑖 0 |𝑋𝑖 = 𝑥

➢ Conditional causal effect help account for treatment effect heterogeneity

▪ Personalized decision-making and targeted interventions

▪ Effect modification (Part 6)

➢ Average treatment effect on the treated (ATT)

𝔼 𝑌𝑖 1 |𝐴𝑖 = 1 − 𝔼 𝑌𝑖 0 |𝐴𝑖 = 1

▪ Helps determine if a treatment or program benefits those who actually participate.

▪ More practically relevant than the ATE in real-world scenarios where treatment assignment is not 

random.

▪ Requires fewer assumptions than ATE.
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Causal effects on other scales

➢ The previously defined ITE, ATE, and CATE are all expressed on the (risk) difference scale. 

𝔼 𝑌𝑖 1 − 𝔼 𝑌𝑖 0

➢ Other scales:
On the (risk) ratio scale: 𝔼 𝑌𝑖 1 /𝔼 𝑌𝑖 0

For a binary outcome 𝑌𝑖

On the odds ratio scale: OR = 𝑃 𝑌𝑖 1 = 1 [1 − 𝑃 𝑌𝑖 0 = 1 ]/𝑃 𝑌𝑖 0 = 1 [1 − 𝑃 𝑌𝑖 1 = 1 ]

For a survival outcome 𝑇𝑖

On the log hazard ratio scale: log 𝜆𝑇 1; 𝑡 − log 𝜆𝑇 0; 𝑡 ,  where 

𝜆𝑇 𝑎; 𝑡 = lim
ℎ→0

𝑃 𝑡 ≤ 𝑇 𝑎 < 𝑡 + ℎ 𝑇 𝑎 > 𝑡 /ℎ

• Causal effects measured on different scales offer distinct interpretations and, from a practical 

perspective, correspond to different statistical models.
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Causal effects on the (risk) ratio scale

➢ For continuous outcomes
Individual causal ratio: 

𝑌𝑖 1 /𝑌𝑖 0
Population causal ratio:

𝔼 𝑌𝑖 1 /𝔼 𝑌𝑖 0

➢ For binary outcomes
Population causal (risk) ratio:

𝑃 𝑌𝑖 1 = 1 /𝑃 𝑌𝑖 0 = 1

➢ Importantly, the population causal risk ratio is NOT the average of individual treatment effects on the 

ratio scale. 

𝔼 𝑌𝑖 1 /𝔼 𝑌𝑖 0 ≠ 𝔼 𝑌𝑖 1 /𝑌𝑖 0

➢ For example, 𝔼 𝑌𝑖 1 /𝔼 𝑌𝑖 0 = 2 indicates that the average potential outcome under treatment is 

twice that under control, but it does not imply that each individual’s outcome doubles with treatment.
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Causal effects on the odds ratio scale

➢ Odds
For a binary outcome 𝑌 with probability 𝜇 = 𝑃(𝑌 = 1). The odds of the event occurring are given by 𝜇/(1 − 𝜇), 

representing the likelihood of occurrence relative to non-occurrence.

➢ Odds Ratio (OR)
OR compares the odds of an event occurring between the treatment (𝐴 = 1) and control (𝐴 = 0) groups, defined as 

𝑃 𝑌 = 1 𝐴 = 1

1 − 𝑃 𝑌 = 1 𝐴 = 1
/

𝑃 𝑌 = 1 𝐴 = 0

1 − 𝑃 𝑌 = 1 𝐴 = 0

- OR remains unchanged regardless of the sampling method used in case-control studies, making it a 

robust measure of association.

➢ Causal Odds Ratio
𝑃 𝑌𝑖 1 = 1

1 − 𝑃 𝑌𝑖 1 = 1
/

𝑃 𝑌𝑖 0 = 1

1 − 𝑃 𝑌𝑖 0 = 1
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Further insights on OR: Collapsibility
(Martinussen and Vansteelandt, 2013; Greenland, Pearl, and Robins, 1999)

➢ Collapsibility
▪ A measure is collapsible if the weighted average of the conditional measures (given a third variable 𝑋, which is 

not a confounder) equals the marginal measure.
(In regression contexts, a measure is strictly collapsible in a generalized linear model if its estimate remains unchanged whether or 

not 𝑍 is included in the model.)

▪ While (causal) risk differences and risk ratios are collapsible, the (causal) odds ratio is NOT.

▪ The concept of noncollapsibility is not a causal one, but rather a much more basic and general arithmetical one.

𝑿 = 𝟏 𝑿 = 𝟎 Marginal

𝑨 = 𝟏 𝑨 = 𝟎 𝑨 = 𝟏 𝑨 = 𝟎 𝑨 = 𝟏 𝑨 = 𝟎

𝒀 = 𝟏 200 150 100 50 300 200

𝒀 = 𝟎 50 100 150 200 200 300

Risk 0.8 0.6 0.4 0.2 0.6 0.4

Risk difference 0.8 - 0.6 = 0.2 0.5 – 0.2 = 0.2 0.6 – 0.4 = 0.2

Risk ratio 0.8/0.6 = 1.33 0.4/0.2 = 2 0.6/0.2 = 1.5

Odds ratio 2.67 2.67 2.25
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NOTE1: Non-existence of Simpson’s paradox

➢ Simpson’s paradox cannot happen to ATE

➢ Let 𝑆𝑖 denote the group corresponding to different stone sizes.
(𝑆𝑖 = 1 for small kidney stones; 𝑆𝑖 = 0 for large kidney stones)

➢ CATE

𝜏𝑠 =
σ𝑖=1

𝑛 𝐼 𝑆𝑖 = 𝑠 𝑌𝑖 1 − 𝑌𝑖 0

σ𝑖=1
𝑛 𝐼 𝑆𝑖 = 𝑠

, 𝑠 = 0, 1

➢ ATE

𝜏 =
σ𝑖=1

𝑛 𝐼 𝑆𝑖 = 1

𝑛
𝜏1 +

σ𝑖=1
𝑛 𝐼 𝑆𝑖 = 0

𝑛
𝜏0 = 𝜋1𝜏1 + 𝜋0𝜏0

➢ If 𝝉𝟏 > 𝟎 and 𝝉𝟎 > 𝟎, we must have 𝝉 > 𝟎.
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NOTE2: Definition of the causal effect

➢ Question
If I previously did not take aspirin and my headache persisted, but now I take aspirin and my headache disappears, 

can I conclude that taking aspirin had a causal effect on my headache?

➢ Potential outcomes
𝑌𝑖,before 0 = 0, 𝑌𝑖,𝑏𝑒𝑓𝑜𝑟𝑒 1 =? , 𝑌𝑖,after 0 =? , 𝑌𝑖,𝑎𝑓𝑡𝑒𝑟 1 = 1

- The individual causal effects, 𝑌𝑖,before 1 − 𝑌𝑖,before 0  and 𝑌𝑖,after 1 − 𝑌𝑖,after 0  are unknown, unless a strong 

assumption is made, such as  𝑌𝑖,before 0 = 𝑌𝑖,after 0 = 0

➢ Same unit at the same time
The causal effect compares potential outcomes for the same unit at the same time post-treatment, 

rather than comparing outcomes at different time points, such as a before-and-after assessment of a 

headache before and after taking aspirin (Imbens and Rubin, 2015).
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NOTE3: A very important issue
(Li and Mealli, 2014)

“Effects of Cause” not 

“Cause of Effects”

Fan Li asks:

In the Rubin Causal Model (RCM), cause/intervention should always be defined before you start the analysis. In other words, the 

RCM is a framework to investigate the “effects of a cause,” but not the “causes of an effect.”  Some criticize this as a major 

limitation. Do you regard this as a limitation? 

Do you think it is ever possible to draw inference on the causes of effects from data, or is it, per se, an interesting quest ion worth 

further investigation?

Donald B. Rubin said:

I regard “the cause” of an event topic as more of a cocktail conversation topic than a scientific inquiry, because it leads to an 

essentially infinite regress. 

Someone says, “He died of lung cancer because he smoked three packs a day”; then someone else counters, “Oh no, he died of lung 

cancer because both of his parents smoked three packs a day and, therefore, there was no hope of his doing anything other than 

smoking three packs a day”; then another one says, “No, no, his parents smoked because his grandparents smoked—they lived in 

North Carolina where, back then, everyone smoked three packs a day, so the cause is where the grandparents lived,” and so on.  

How far back should you go? You can’t talk sensibly about the cause of an event; you can talk about “but for that cause (and 

there can be many ‘but for’s), what would have happened?” All these questions can be addressed hypothetically. But the cause? The 

notion is meaningless to me.
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NOTE3: Cause of effects
(Dawid and Musio, 2022)

➢ Effects of cause
Forecasting (forward-looking causal inference)

Peter has started smoking daily. What is his risk of developing lung cancer?

Decision 

Peter is considering smoking but is concerned about the risk of lung cancer. How should he decide?

➢ Cause of effects
Backcasting (backward-looking causal inference)

Peter has been diagnosed with lung cancer. Did he have a history of smoking? If so, what was the intensity and 

duration of his smoking?

Attribution
Peter has smoked daily for 10 years and developed lung cancer. Is his lung cancer caused by smoking?

➢ Probability of necessary causation (Pearl, 2000)

𝑃(𝑌 0 = 0|𝐴 = 1, 𝑌 = 1)
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